April  2013, 33(4): 1407-1429. doi: 10.3934/dcds.2013.33.1407

Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds

1. 

College of Mathematics and Econometrics, Hunan University, Changsha 410082

2. 

Institute of Contemporary Mathematics, Henan University, School of Mathematics and Information Science, Henan University, Kaifeng 475004

Received  July 2011 Revised  August 2012 Published  October 2012

Let $(\mathcal{M}, \tilde{g})$ be an $N$-dimensional smooth compact Riemannian manifold. We consider the problem $$ \varepsilon^2 Δ_{\tilde{g}} \tilde{u} + V(\tilde{z})\tilde{u}(1-\tilde{u}^2)=0            in \mathcal{M}, $$ where $\varepsilon >0$ is a small parameter and $V$ is a positive, smooth function in $\mathcal{M}$. Let $ \mathcal{K}\subset \mathcal{M}$ be an $(N-1)$-dimensional smooth submanifold that divides $\mathcal{M}$ into two disjoint components $\mathcal{M}_{\pm}$. We assume $\mathcal{K}$ is stationary and non-degenerate relative to the weighted area functional $\int_{\mathcal{K}}V^{\frac{1}{2}}$. We prove that there exist two transition layer solutions $u_\varepsilon^{(1)}, u_\varepsilon^{(2)}$ when $\varepsilon$ is sufficiently small. The first layer solution $u_\varepsilon^{(1)}$ approaches $-1$ in $\mathcal{M}_{-}$ and $+1$ in $\mathcal{M}_{+}$ as $\varepsilon$ tends to 0, while the other solution $u_\varepsilon^{(2)}$ exhibits a transition layer in the opposite direction.
Citation: Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407
References:
[1]

N. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundary,, Cal. Var. PDE, 11 (2000), 233.   Google Scholar

[2]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.   Google Scholar

[3]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 117.   Google Scholar

[4]

E. N. Dancer and S. Yan, multi-layer solutions for an elliptic problem,, J. Diff. Eqns., 194 (2003), 382.   Google Scholar

[5]

M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458.   Google Scholar

[6]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 70 (2007), 113.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Archive Rational Mechanical Analysis, 190 (2008), 141.   Google Scholar

[8]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Didcrete Contin. Dunam. Systems, 28 (2010), 975.  doi: 10.3934/dcds.2010.28.975.  Google Scholar

[9]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918.  doi: 10.1007/s00039-010-0083-6.  Google Scholar

[10]

Y. Du and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation,, J. Diff. Eqns., 238 (2007), 87.   Google Scholar

[11]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 249 (2010), 215.   Google Scholar

[12]

G. Flores, P. Padilla and Y. Tonegawa, Higher energy solutions in the theory of phase transitions: A variational approach,, J. Diff. Eqns., 169 (2001), 190.   Google Scholar

[13]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh, 11A (1989), 69.   Google Scholar

[14]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura et Aplicata, 184 (2005), 17.  doi: 10.1007/s10231-003-0088-y.  Google Scholar

[15]

F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, Geom. Funct. Anal., 16 (2006), 924.   Google Scholar

[16]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105.   Google Scholar

[17]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.   Google Scholar

[18]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, J. Fixed Point Theory Appl., 1 (2007), 305.   Google Scholar

[19]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 357.   Google Scholar

[20]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.   Google Scholar

[21]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 20 (2003), 107.   Google Scholar

[22]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359.   Google Scholar

[23]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551.   Google Scholar

[24]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Commun. Pure Appl. Math., 56 (2003), 1078.   Google Scholar

[25]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157.   Google Scholar

[26]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.   Google Scholar

[27]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175.   Google Scholar

[28]

J. Yang and X. Yang, Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation on higher dimensional domain,, Commun. Pure Appl. Anal., 1 (2013), 303.   Google Scholar

show all references

References:
[1]

N. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundary,, Cal. Var. PDE, 11 (2000), 233.   Google Scholar

[2]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.   Google Scholar

[3]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 117.   Google Scholar

[4]

E. N. Dancer and S. Yan, multi-layer solutions for an elliptic problem,, J. Diff. Eqns., 194 (2003), 382.   Google Scholar

[5]

M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in $R^2$,, J. Funct. Anal., 258 (2010), 458.   Google Scholar

[6]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 70 (2007), 113.   Google Scholar

[7]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Archive Rational Mechanical Analysis, 190 (2008), 141.   Google Scholar

[8]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Didcrete Contin. Dunam. Systems, 28 (2010), 975.  doi: 10.3934/dcds.2010.28.975.  Google Scholar

[9]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918.  doi: 10.1007/s00039-010-0083-6.  Google Scholar

[10]

Y. Du and K. Nakashima, Morse index of layered solutions to the heterogeneous Allen-Cahn equation,, J. Diff. Eqns., 238 (2007), 87.   Google Scholar

[11]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 249 (2010), 215.   Google Scholar

[12]

G. Flores, P. Padilla and Y. Tonegawa, Higher energy solutions in the theory of phase transitions: A variational approach,, J. Diff. Eqns., 169 (2001), 190.   Google Scholar

[13]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh, 11A (1989), 69.   Google Scholar

[14]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura et Aplicata, 184 (2005), 17.  doi: 10.1007/s10231-003-0088-y.  Google Scholar

[15]

F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, Geom. Funct. Anal., 16 (2006), 924.   Google Scholar

[16]

A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105.   Google Scholar

[17]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.   Google Scholar

[18]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, J. Fixed Point Theory Appl., 1 (2007), 305.   Google Scholar

[19]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 357.   Google Scholar

[20]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.   Google Scholar

[21]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 20 (2003), 107.   Google Scholar

[22]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359.   Google Scholar

[23]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551.   Google Scholar

[24]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Commun. Pure Appl. Math., 56 (2003), 1078.   Google Scholar

[25]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157.   Google Scholar

[26]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.   Google Scholar

[27]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175.   Google Scholar

[28]

J. Yang and X. Yang, Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation on higher dimensional domain,, Commun. Pure Appl. Anal., 1 (2013), 303.   Google Scholar

[1]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[6]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[7]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[8]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[9]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[10]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[13]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[14]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[17]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[18]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[19]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[20]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]