Citation: |
[1] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,'' Springer Monographs in Mathematics. Springer-Verlag Ltd., London, 2006. |
[2] |
R. L. Dobrushin, Y. G. Sinai and Y. M. Sukhov, Dynamical systems of statistical mechanics, in "Itogi Nauki'', VINITI (1985), 235-284; engl. transl. in "Dynamical systems. II: Ergodic theory with applications to dynamical systems and statistical mechanics'' (ed. Ya. G. Sinai), Encyclopaedia Math. Sci., Springer, Berlin Heidelberg, 1989. |
[3] |
N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281-303. |
[4] |
I. M. Gel'fand and G. E. Shilov, "Generalized Functions. Vol. 3: Theory of Differential Equations,'' Transl. from the Russian by E. Meinhard, Mayer Academic Press, New York-London, 1967. |
[5] |
D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Vlasov scaling for stochastic dynamics of continuous systems, J. Stat. Phys., 141 (2010), 158-178.doi: 10.1007/s10955-010-0038-1. |
[6] |
D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Individual based model with competition in spatial ecology, SIAM J. Math. Anal., 41 (2009), 297-317.doi: 10.1137/080719376. |
[7] |
D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Vlasov scaling for the Glauber dynamics in continuum, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 14 (2011), 537-569.doi: 10.1142/S021902571100450X. |
[8] |
D. Finkelshtein, Yu. Kondratiev, O. Kutovyi and E. Zhizhina, An approximative approach for construction of the Glauber dynamics in continuum, Math. Nachr., 285 (2012), 223-235.doi: 10.1002/mana.200910248. |
[9] |
D. Finkelshtein, Yu. Kondratiev and E. Lytvynov, Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics, Random Oper. Stochastic Equations, 15 (2007), 105-126.doi: 10.1515/rose.2007.007. |
[10] |
D. Finkelshtein, Yu. Kondratiev and M. J. Oliveira, Markov evolution and hierarchical equations in the continuum. I: One-component systems, J. Evol. Equ., 9 (2009), 197-233.doi: 10.1007/s00028-009-0007-9. |
[11] |
Yu. Kondratiev and T. Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 201-233.doi: 10.1142/S0219025702000833. |
[12] |
Yu. Kondratiev and O. Kutovyi, On the metrical properties of the configuration space, Math. Nachr., 279 (2006), 774-783.doi: 10.1002/mana.200310392. |
[13] |
Yu. Kondratiev, O. Kutovyi and R. Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, J. Funct. Anal., 255 (2008), 200-227.doi: 10.1016/j.jfa.2007.12.006. |
[14] |
Yu. Kondratiev, O. Kutovyi and R. Minlos, Ergodicity of non-equilibrium Glauber dynamics in continuum, J. Funct. Anal., 258 (2010), 3097-3116.doi: 10.1016/j.jfa.2009.09.005. |
[15] |
Yu. Kondratiev, O. Kutovyi and E. Zhizhina, Nonequilibrium Glauber-type dynamics in continuum, J. Math. Phys., 47 (2006), 17 pp. 113501.doi: 10.1063/1.2354589. |
[16] |
D. Ruelle, "Statistical Mechanics: Rigorous Results,'' World Scientific, Singapore, 1999. |
[17] |
H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by perturbation and approximation, in "Positivity IV--Theory and Applications," 135-146, Tech. Univ. Dresden, Dresden, 2006. |
[18] |
F. Trèves, "Ovcyannikov Theorem and Hyperdifferential Operators,'' Notas de Matemática, No. 46 Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968. |