April  2013, 33(4): 1451-1476. doi: 10.3934/dcds.2013.33.1451

Hyperbolic measures with transverse intersections of stable and unstable manifolds

1. 

Faculty of Engineering, Kyushu Institute of Technology, Tobata, Fukuoka 804-8550, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received  January 2011 Revised  September 2012 Published  October 2012

Let $f$ be a diffeomorphism of a manifold preserving a hyperbolic Borel probability measure $ μ $ having transverse intersections for almost every pair of stable and unstable manifolds. A lower bound on the Hausdorff dimension of generic sets is given in terms of the Lyapunov exponents and the metric entropy. Furthermore we obtain a lower bound for the large deviation rate.
Citation: Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451
References:
[1]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps, J. Stat. Phys., 125 (2006), 411-453. doi: 10.1007/s10955-006-9183-y.  Google Scholar

[2]

L. Barreira and Ya. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," Univ. Lect. Ser. 23, Amer. Math. Soc., 2002.  Google Scholar

[3]

L. Barreira, Ya. B. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures, Ann. of Math., 149 (1999), 755-783. doi: 10.2307/121072.  Google Scholar

[4]

L. R. Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 28 (2008), 587-612.  Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Brin, Hölder continuity of invariant distributions, in "Smooth Ergodic Theory and Its Applications" (eds. A. B. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Proc. Symp. Pure Math., Amer. Math. Soc., (2001), 91-93.  Google Scholar

[7]

M. Brin, J. Feldman and A. B. Katok, Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents, Ann. of. Math., 113 (1981), 159-179. doi: 10.2307/1971136.  Google Scholar

[8]

Y. Cao, S. Luzzatto and I. Rios, The boundary of hyperbolicity for Hénon-like families, Ergod. Th. & Dynam. Sys., 28 (2008), 1049-1080.  Google Scholar

[9]

A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces, in "Séminaire Orsay, Astérisque," 66-67 (1979).  Google Scholar

[10]

D. J. Feng, K. S. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv.Math., 169 (2002), 58-91. doi: 10.1006/aima.2001.2054.  Google Scholar

[11]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1-118. Google Scholar

[12]

M. Gerber and A. B. Katok, Smooth models of Thurston's pseudo-Anosov maps, Ann. scient. Éc. Norm. Sup., 15 (1982), 173-204.  Google Scholar

[13]

A. B. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Ètudes Sci. Publ. Math., 51 (1980), 137-173. doi: 10.1007/BF02684777.  Google Scholar

[14]

A. B. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, Cambridge, 1995.  Google Scholar

[15]

A. B. Katok and L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior, Supplement to "Introduction to the Modern Theory of Dynamical Systems" (eds. A. B. Katok and B. Hasselblatt), Cambridge University Press, Cambridge, (1995), 659-700.  Google Scholar

[16]

Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321 (1990), 505-524. doi: 10.1090/S0002-9947-1990-1025756-7.  Google Scholar

[17]

F. Ledrappier and J. M. Strelcyn, A proof of estimation from below in Pesin's entropy formula, Ergod. Th. & Dynam. Sys., 2 (1982), 203-219.  Google Scholar

[18]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part I : Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985), 509-539. doi: 10.2307/1971328.  Google Scholar

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension, Ann. of Math., 122 (1985), 540-574. doi: 10.2307/1971329.  Google Scholar

[20]

R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396. doi: 10.1016/0040-9383(78)90005-8.  Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics," Springer, Berlin, 1987.  Google Scholar

[22]

I. Melbourne and M. Nicol, Large deviations for non-uniformly hyperbolic systems, Trans. Amer. Math. Soc., 360 (2008), 6661-6676. doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[23]

S. Orey and S. Pelikan, Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms, Trans. Amer. Math. Soc., 315 (1989), 741-753. doi: 10.2307/2001304.  Google Scholar

[24]

Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akd. Nauk SSSR Ser. Mat., 40 (1976), 1332-1379; English transl., Math. USSR. Isvestia, 40 (1976), 1261-1305.  Google Scholar

[25]

Ya. B. Pesin, "Dimension Theory in Dynamical Systems: Contemporary Views and Applications," Chicago Lect. Math. Ser., University of Chicago Press, 1997.  Google Scholar

[26]

Ya. B. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Stat. Phys., 86 (1997), 233-275. doi: 10.1007/BF02180206.  Google Scholar

[27]

Ya. B. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106.  Google Scholar

[28]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts, Nonlinearity, 18 (2005), 237-261. doi: 10.1088/0951-7715/18/1/013.  Google Scholar

[29]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergod. Th. & Dynam. Sys., 27 (2007), 929-956. doi: 10.1017/S0143385706000824.  Google Scholar

[30]

E. Pujals and M. Sambarino, A sufficient condition for robustly minimal foliations, Ergod. Th. & Dynam. Sys., 26 (2006), 281-289. doi: 10.1017/S0143385705000568.  Google Scholar

[31]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc., 138 (2010), 315-321. doi: 10.1090/S0002-9939-09-10085-0.  Google Scholar

[32]

J. Schmeling and H. Weiss, An overview of the dimension theory of dynamical systems, in "Smooth Ergodic Theory and Its Applications" (eds. A. B. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Proc. Symp. Pure Math., Amer. Math. Soc., (2001), 429-488.  Google Scholar

[33]

Y. Takahashi, Two aspects of large deviation theory for large time, in "Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985)" (eds. A. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Academic Press, Boston, (1987), 363-384  Google Scholar

[34]

F. Takens and E. Verbitskiy, Multifractal analysis of local entropies for expansive homeomorphisms with specification, Commun. Math. Phys., 203 (1999), 593-612. doi: 10.1007/s002200050627.  Google Scholar

[35]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain noncompact sets, Ergod. Th. & Dynam. Sys., 23 (2003), 317-348.  Google Scholar

[36]

M. Urbański and C. Wolf, Ergodic Theory of Parabolic Horseshoes, Commun. Math. Phys., 281 (2008), 711-751. doi: 10.1007/s00220-008-0498-1.  Google Scholar

[37]

L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 2 (1982), 109-124.  Google Scholar

[38]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543. doi: 10.2307/2001318.  Google Scholar

show all references

References:
[1]

V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps, J. Stat. Phys., 125 (2006), 411-453. doi: 10.1007/s10955-006-9183-y.  Google Scholar

[2]

L. Barreira and Ya. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," Univ. Lect. Ser. 23, Amer. Math. Soc., 2002.  Google Scholar

[3]

L. Barreira, Ya. B. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures, Ann. of Math., 149 (1999), 755-783. doi: 10.2307/121072.  Google Scholar

[4]

L. R. Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 28 (2008), 587-612.  Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Brin, Hölder continuity of invariant distributions, in "Smooth Ergodic Theory and Its Applications" (eds. A. B. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Proc. Symp. Pure Math., Amer. Math. Soc., (2001), 91-93.  Google Scholar

[7]

M. Brin, J. Feldman and A. B. Katok, Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents, Ann. of. Math., 113 (1981), 159-179. doi: 10.2307/1971136.  Google Scholar

[8]

Y. Cao, S. Luzzatto and I. Rios, The boundary of hyperbolicity for Hénon-like families, Ergod. Th. & Dynam. Sys., 28 (2008), 1049-1080.  Google Scholar

[9]

A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces, in "Séminaire Orsay, Astérisque," 66-67 (1979).  Google Scholar

[10]

D. J. Feng, K. S. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv.Math., 169 (2002), 58-91. doi: 10.1006/aima.2001.2054.  Google Scholar

[11]

O. Frostman, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Math. Sem., 3 (1935), 1-118. Google Scholar

[12]

M. Gerber and A. B. Katok, Smooth models of Thurston's pseudo-Anosov maps, Ann. scient. Éc. Norm. Sup., 15 (1982), 173-204.  Google Scholar

[13]

A. B. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Ètudes Sci. Publ. Math., 51 (1980), 137-173. doi: 10.1007/BF02684777.  Google Scholar

[14]

A. B. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, Cambridge, 1995.  Google Scholar

[15]

A. B. Katok and L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior, Supplement to "Introduction to the Modern Theory of Dynamical Systems" (eds. A. B. Katok and B. Hasselblatt), Cambridge University Press, Cambridge, (1995), 659-700.  Google Scholar

[16]

Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321 (1990), 505-524. doi: 10.1090/S0002-9947-1990-1025756-7.  Google Scholar

[17]

F. Ledrappier and J. M. Strelcyn, A proof of estimation from below in Pesin's entropy formula, Ergod. Th. & Dynam. Sys., 2 (1982), 203-219.  Google Scholar

[18]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part I : Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985), 509-539. doi: 10.2307/1971328.  Google Scholar

[19]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, Part II: Relations between entropy, exponents and dimension, Ann. of Math., 122 (1985), 540-574. doi: 10.2307/1971329.  Google Scholar

[20]

R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396. doi: 10.1016/0040-9383(78)90005-8.  Google Scholar

[21]

R. Mañé, "Ergodic Theory and Differentiable Dynamics," Springer, Berlin, 1987.  Google Scholar

[22]

I. Melbourne and M. Nicol, Large deviations for non-uniformly hyperbolic systems, Trans. Amer. Math. Soc., 360 (2008), 6661-6676. doi: 10.1090/S0002-9947-08-04520-0.  Google Scholar

[23]

S. Orey and S. Pelikan, Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms, Trans. Amer. Math. Soc., 315 (1989), 741-753. doi: 10.2307/2001304.  Google Scholar

[24]

Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akd. Nauk SSSR Ser. Mat., 40 (1976), 1332-1379; English transl., Math. USSR. Isvestia, 40 (1976), 1261-1305.  Google Scholar

[25]

Ya. B. Pesin, "Dimension Theory in Dynamical Systems: Contemporary Views and Applications," Chicago Lect. Math. Ser., University of Chicago Press, 1997.  Google Scholar

[26]

Ya. B. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Stat. Phys., 86 (1997), 233-275. doi: 10.1007/BF02180206.  Google Scholar

[27]

Ya. B. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106.  Google Scholar

[28]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts, Nonlinearity, 18 (2005), 237-261. doi: 10.1088/0951-7715/18/1/013.  Google Scholar

[29]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergod. Th. & Dynam. Sys., 27 (2007), 929-956. doi: 10.1017/S0143385706000824.  Google Scholar

[30]

E. Pujals and M. Sambarino, A sufficient condition for robustly minimal foliations, Ergod. Th. & Dynam. Sys., 26 (2006), 281-289. doi: 10.1017/S0143385705000568.  Google Scholar

[31]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc., 138 (2010), 315-321. doi: 10.1090/S0002-9939-09-10085-0.  Google Scholar

[32]

J. Schmeling and H. Weiss, An overview of the dimension theory of dynamical systems, in "Smooth Ergodic Theory and Its Applications" (eds. A. B. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Proc. Symp. Pure Math., Amer. Math. Soc., (2001), 429-488.  Google Scholar

[33]

Y. Takahashi, Two aspects of large deviation theory for large time, in "Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985)" (eds. A. Katok, R. de la Llave, Ya. B. Pesin and H. Weiss), Academic Press, Boston, (1987), 363-384  Google Scholar

[34]

F. Takens and E. Verbitskiy, Multifractal analysis of local entropies for expansive homeomorphisms with specification, Commun. Math. Phys., 203 (1999), 593-612. doi: 10.1007/s002200050627.  Google Scholar

[35]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain noncompact sets, Ergod. Th. & Dynam. Sys., 23 (2003), 317-348.  Google Scholar

[36]

M. Urbański and C. Wolf, Ergodic Theory of Parabolic Horseshoes, Commun. Math. Phys., 281 (2008), 711-751. doi: 10.1007/s00220-008-0498-1.  Google Scholar

[37]

L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 2 (1982), 109-124.  Google Scholar

[38]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543. doi: 10.2307/2001318.  Google Scholar

[1]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[2]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[3]

Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[6]

Koen De Turck, Sabine Wittevrongel. Receiver buffer behavior for the selective repeat protocol over a wireless channel: An exact and large-deviations analysis. Journal of Industrial & Management Optimization, 2010, 6 (3) : 603-619. doi: 10.3934/jimo.2010.6.603

[7]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[8]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[9]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[10]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[11]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[12]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[13]

Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021021

[14]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[15]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[16]

Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277

[17]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic & Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[18]

Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523

[19]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[20]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]