April  2013, 33(4): 1477-1498. doi: 10.3934/dcds.2013.33.1477

Dynamics of $\lambda$-continued fractions and $\beta$-shifts

1. 

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, CNRS, Avenue de l’Université, 76801 Saint Étienne du Rouvray, France

2. 

Laboratoire Analyse, Géométrie et Applications, Université Paris 13 Institut Galilée, CNRS, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

3. 

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, CNRS, Avenue de l'Université, Avenue de l'Université, 76801 Saint Étienne du Rouvray, France

Received  October 2011 Revised  May 2012 Published  October 2012

For a real number $0<\lambda<2$, we introduce a transformation $T_\lambda$ naturally associated to expansion in $\lambda$-continued fraction, for which we also give a geometrical interpretation. The symbolic coding of the orbits of $T_\lambda$ provides an algorithm to expand any positive real number in $\lambda$-continued fraction. We prove the conjugacy between $T_\lambda$ and some $\beta$-shift, $\beta>1$. Some properties of the map $\lambda\mapsto\beta(\lambda)$ are established: It is increasing and continuous from $]0, 2[$ onto $]1,\infty[$ but non-analytic.
Citation: Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477
References:
[1]

F. Blanchard, $\beta$-expansions and symbolic dynamics,, Theoret. Comput. Sci., 65 (1989), 131.   Google Scholar

[2]

Karma Dajani and Martijn de Vries, Measures of maximal entropy for random $\beta$-expansions,, J. Eur. Math. Soc. (JEMS), 7 (2005), 51.   Google Scholar

[3]

Karma Dajani and Martijn de Vries, Invariant densities for random $\beta$-expansions,, J. Eur. Math. Soc. (JEMS), 9 (2007), 157.   Google Scholar

[4]

Shunji Ito and Yōichirō Takahashi, Markov subshifts and realization of $\beta $-expansions,, J. Math. Soc. Japan, 26 (1974), 33.  doi: 10.2969/jmsj/02610033.  Google Scholar

[5]

Élise Janvresse, Benoît Rittaud and Thierry de la Rue, How do random Fibonacci sequences grow?,, Prob. Th. Rel. Fields, 142 (2008), 619.  doi: 10.1007/s00440-007-0117-7.  Google Scholar

[6]

. Janvresse, B. Rittaud and T. de la Rue, Almost-sure growth rate of generalized random Fibonacci sequences,, Ann. IHP, 46 (2010), 135.  doi: 10.1214/09-AIHP312.  Google Scholar

[7]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[8]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[9]

David Rosen, A class of continued fractions associated with certain properly discontinuous groups,, Duke Math. J., 21 (1954), 549.  doi: 10.1215/S0012-7094-54-02154-7.  Google Scholar

show all references

References:
[1]

F. Blanchard, $\beta$-expansions and symbolic dynamics,, Theoret. Comput. Sci., 65 (1989), 131.   Google Scholar

[2]

Karma Dajani and Martijn de Vries, Measures of maximal entropy for random $\beta$-expansions,, J. Eur. Math. Soc. (JEMS), 7 (2005), 51.   Google Scholar

[3]

Karma Dajani and Martijn de Vries, Invariant densities for random $\beta$-expansions,, J. Eur. Math. Soc. (JEMS), 9 (2007), 157.   Google Scholar

[4]

Shunji Ito and Yōichirō Takahashi, Markov subshifts and realization of $\beta $-expansions,, J. Math. Soc. Japan, 26 (1974), 33.  doi: 10.2969/jmsj/02610033.  Google Scholar

[5]

Élise Janvresse, Benoît Rittaud and Thierry de la Rue, How do random Fibonacci sequences grow?,, Prob. Th. Rel. Fields, 142 (2008), 619.  doi: 10.1007/s00440-007-0117-7.  Google Scholar

[6]

. Janvresse, B. Rittaud and T. de la Rue, Almost-sure growth rate of generalized random Fibonacci sequences,, Ann. IHP, 46 (2010), 135.  doi: 10.1214/09-AIHP312.  Google Scholar

[7]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar, 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[8]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.  doi: 10.1007/BF02020331.  Google Scholar

[9]

David Rosen, A class of continued fractions associated with certain properly discontinuous groups,, Duke Math. J., 21 (1954), 549.  doi: 10.1215/S0012-7094-54-02154-7.  Google Scholar

[1]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[4]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[5]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[6]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[9]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[10]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[11]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[12]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[16]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[17]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[18]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[19]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[20]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

[Back to Top]