\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial regularity of minimum energy configurations in ferroelectric liquid crystals

Abstract Related Papers Cited by
  • Considered here is a system of smectic liquid crystals possessing polarizations described by the Oseen-Frank and Chen-Lubensky energies. We establish partial regularity of minimizers for the governing energy functional using the idea of $(c,\beta)$-almost minimizer introduced in [9].
    Mathematics Subject Classification: Primary: 35J50, 35J47, 47J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bauman, J. Park and D. PhillipsExistence of solutions to boundary value problems for smectic liquid crystals, submitted.

    [2]

    P. Bauman and D. PhillipsAnalysis and stability of bent core liquid crystal fibers, submitted.

    [3]

    G. Carbou, Regularity for critical points of a nonlocal energy, Calc. Var. Partial Differential Equations, 5 (1997), 409-433.

    [4]

    J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions, Phys. Rev. A, 14 (1976), 1202-1297.

    [5]

    P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," Clarendon Press, 1993.

    [6]

    F. C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19-28.doi: 10.1039/df9582500019.

    [7]

    M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Princeton University Press, Princeton, NJ, 1983.

    [8]

    M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II," Springer, 1998.

    [9]

    R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism, Commun. in Partial Differential Equations, 25 (2000), 1235-1258.doi: 10.1080/03605300008821549.

    [10]

    R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547-570.doi: 10.1007/BF01238933.

    [11]

    S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals," Wiley-VCH, 1999.

    [12]

    F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies, Continuum Mech. Thermodyn., 3 (1991), 237-250.

    [13]

    I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases, Phys. Rev. E, 57 (1998), 574-581.doi: 10.1103/PhysRevE.57.574.

    [14]

    C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883-889.doi: 10.1039/tf9332900883.

    [15]

    M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals, J. Phys. II France, 5(1995), 1223-1240.

    [16]

    J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals, SIAM J. Appl. Math., 66 (2006), 2107-2126.doi: 10.1137/050641120.

    [17]

    J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals, Discrete and Cont. Dyn. Syst., 26 (2010), 1419-1440.

    [18]

    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom., 17 (1982), 307-335.

    [19]

    ______, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., 18 (1983), 253-268.

    [20]

    L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps," Birkäuser Verlag, Basel, Boston, Berlin, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return