Advanced Search
Article Contents
Article Contents

Partial regularity of minimum energy configurations in ferroelectric liquid crystals

Abstract Related Papers Cited by
  • Considered here is a system of smectic liquid crystals possessing polarizations described by the Oseen-Frank and Chen-Lubensky energies. We establish partial regularity of minimizers for the governing energy functional using the idea of $(c,\beta)$-almost minimizer introduced in [9].
    Mathematics Subject Classification: Primary: 35J50, 35J47, 47J05.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Bauman, J. Park and D. PhillipsExistence of solutions to boundary value problems for smectic liquid crystals, submitted.


    P. Bauman and D. PhillipsAnalysis and stability of bent core liquid crystal fibers, submitted.


    G. Carbou, Regularity for critical points of a nonlocal energy, Calc. Var. Partial Differential Equations, 5 (1997), 409-433.


    J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions, Phys. Rev. A, 14 (1976), 1202-1297.


    P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," Clarendon Press, 1993.


    F. C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19-28.doi: 10.1039/df9582500019.


    M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Princeton University Press, Princeton, NJ, 1983.


    M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II," Springer, 1998.


    R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism, Commun. in Partial Differential Equations, 25 (2000), 1235-1258.doi: 10.1080/03605300008821549.


    R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547-570.doi: 10.1007/BF01238933.


    S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals," Wiley-VCH, 1999.


    F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies, Continuum Mech. Thermodyn., 3 (1991), 237-250.


    I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases, Phys. Rev. E, 57 (1998), 574-581.doi: 10.1103/PhysRevE.57.574.


    C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883-889.doi: 10.1039/tf9332900883.


    M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals, J. Phys. II France, 5(1995), 1223-1240.


    J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals, SIAM J. Appl. Math., 66 (2006), 2107-2126.doi: 10.1137/050641120.


    J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals, Discrete and Cont. Dyn. Syst., 26 (2010), 1419-1440.


    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom., 17 (1982), 307-335.


    ______, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., 18 (1983), 253-268.


    L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps," Birkäuser Verlag, Basel, Boston, Berlin, 1996.

  • 加载中

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint