-
Previous Article
Continua of local minimizers in a quasilinear model of phase transitions
- DCDS Home
- This Issue
-
Next Article
On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian
Some bifurcation results for rapidly growing nonlinearities
1. | School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia |
References:
[1] |
K. C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems," Birkhäuser Boston Inc., Boston, 1993. |
[2] |
E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., s3-27 (1973), 747-765.
doi: 10.1112/plms/s3-27.4.747. |
[3] |
E. N. Dancer, Global solution branches for positive mappings, Arch. Rational Mech. Anal., 52 (1973), 181-192.
doi: 10.1007/BF00282326. |
[4] |
E. N. Dancer, Stable solutions on $\mathbb R^n$ and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations, 17 (2004), 961-970. |
[5] |
E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 173-179. |
[6] |
E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233.
doi: 10.1515/CRELLE.2008.055. |
[7] |
E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations, 37 (1980), 404-437.
doi: 10.1016/0022-0396(80)90107-2. |
[8] |
E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392. |
[9] |
E. N. Dancer, Stable and finite Morse index solutions on $\mathbf R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243.
doi: 10.1090/S0002-9947-04-03543-3. |
[10] |
E. N. Dancer, Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4), 178 (2000), 225-233.
doi: 10.1007/BF02505896. |
[11] |
E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u=e^u$ on $\mathbb R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.
doi: 10.1090/S0002-9939-08-09772-4. |
[12] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1981. |
[13] |
G. Whyburn, "Topological Analysis," Princeton University Press, Princeton, N. J., 1958. |
show all references
References:
[1] |
K. C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems," Birkhäuser Boston Inc., Boston, 1993. |
[2] |
E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc., s3-27 (1973), 747-765.
doi: 10.1112/plms/s3-27.4.747. |
[3] |
E. N. Dancer, Global solution branches for positive mappings, Arch. Rational Mech. Anal., 52 (1973), 181-192.
doi: 10.1007/BF00282326. |
[4] |
E. N. Dancer, Stable solutions on $\mathbb R^n$ and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations, 17 (2004), 961-970. |
[5] |
E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 173-179. |
[6] |
E. N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., 620 (2008), 213-233.
doi: 10.1515/CRELLE.2008.055. |
[7] |
E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations, 37 (1980), 404-437.
doi: 10.1016/0022-0396(80)90107-2. |
[8] |
E. N. Dancer, Real analyticity and non-degeneracy, Math. Ann., 325 (2003), 369-392. |
[9] |
E. N. Dancer, Stable and finite Morse index solutions on $\mathbf R^n$ or on bounded domains with small diffusion, Trans. Amer. Math. Soc., 357 (2005), 1225-1243.
doi: 10.1090/S0002-9947-04-03543-3. |
[10] |
E. N. Dancer, Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4), 178 (2000), 225-233.
doi: 10.1007/BF02505896. |
[11] |
E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u=e^u$ on $\mathbb R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.
doi: 10.1090/S0002-9939-08-09772-4. |
[12] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1981. |
[13] |
G. Whyburn, "Topological Analysis," Princeton University Press, Princeton, N. J., 1958. |
[1] |
Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147 |
[2] |
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189 |
[3] |
Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037 |
[4] |
Zuji Guo, Zhaoli Liu. Perturbed elliptic equations with oscillatory nonlinearities. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3567-3585. doi: 10.3934/dcds.2012.32.3567 |
[5] |
Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373 |
[6] |
Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798 |
[7] |
Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure and Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013 |
[8] |
Rakesh Arora. Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2253-2269. doi: 10.3934/cpaa.2022056 |
[9] |
Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 |
[10] |
José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327 |
[11] |
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 |
[12] |
Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015 |
[13] |
Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104 |
[14] |
Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693 |
[15] |
Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97 |
[16] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[17] |
M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703 |
[18] |
Andrzej Świȩch. Pointwise properties of $ L^p $-viscosity solutions of uniformly elliptic equations with quadratically growing gradient terms. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2945-2962. doi: 10.3934/dcds.2020156 |
[19] |
Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555 |
[20] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]