April  2013, 33(4): 1545-1562. doi: 10.3934/dcds.2013.33.1545

SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms

1. 

School of Statistics, Capital University of Economics and Business, Beijing 100070, China

Received  January 2011 Revised  August 2012 Published  October 2012

We investigate a class of non-hyperbolic diffeomorphisms defined on the product space. By using the Pesin theory combined with the general theory of differentiable dynamical systems, we prove that there are exactly two SRB attractors, and their basins cover a full measure subset of the ambient manifold. Furthermore, we prove that the basins of SRB attractors have the strange intermingled phenomenon, i.e. they are measure-theoretically dense in each other. The intermingled phenomena have been observed in many physical systems by numerical experiments, and considered to be important to some fundamental problems in physical, biology and computer science etc. Finally, we describe a concrete example for application.
Citation: Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545
References:
[1]

J. C. Alexander, B. Hunt, I. Kan and J. A. Yorke, Intermingled basins for the triangle map,, Ergodic Theory and Dynamical Systems, 16 (1996), 651.  doi: 10.1017/S0143385700009020.  Google Scholar

[2]

J. C. Alexander, I. Kan, J. A. Yorke and Z. You, Riddled basins,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2 (1992), 795.   Google Scholar

[3]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory, Ergodic diffeomorphisms,, Trudy Moskov. Mat. Obšč, 23 (1970), 3.   Google Scholar

[4]

P. Ashwin, J. Buescu and I. Stewart, Bubbling of attractors and synchronisation of chaotic oscillators,, Phys. Lett. A, 193 (1994), 126.  doi: 10.1016/0375-9601(94)90947-4.  Google Scholar

[5]

L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", University Lecture Series 23, (2002).   Google Scholar

[6]

G. D. Birkhoff, Probability and physical systems,, Bull. Amer. Math. Soc., 38 (1932), 361.  doi: 10.1090/S0002-9904-1932-05389-7.  Google Scholar

[7]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting,, Israel Journal of Mathematics, 115 (2000), 157.  doi: 10.1007/BF02810585.  Google Scholar

[8]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[9]

M. Brin and G. Stuck, "Introduction to Dynamical Systems,", Cambridge University Press, (2002).   Google Scholar

[10]

K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity,, in, (1999), 327.   Google Scholar

[11]

B. Fayad, Topologically mixing flows with pure point spectrum,, in, (2003), 113.   Google Scholar

[12]

P. Grete and M. Markus, Residence time distributions for double-scroll attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1007.  doi: 10.1142/S0218127407017720.  Google Scholar

[13]

F. Hofbauer, J. Hofbauer, P. Raith and T. Steinberger, Intermingled basins in a two species system,, J. Math. Biol., 49 (2004), 293.  doi: 10.1007/s00285-003-0253-3.  Google Scholar

[14]

I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin,, Bull. Amer. Math. Soc., 31 (1994), 68.  doi: 10.1090/S0273-0979-1994-00507-5.  Google Scholar

[15]

T. Kapitaniak, Uncertainty in coupled chaotic systems: Locally intermingled basins of attraction,, Phys. Rev. E(3), 53 (1996), 6555.  doi: 10.1103/PhysRevE.53.6555.  Google Scholar

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems, With a Supplementary Chapter by Katok and Leonardo Mendoza,", Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[17]

Y. C. Lai, C. Grebogi and J. A. Yorke, Intermingled basins and riddling bifurcation in chaotic dynamical systems,, Differential equations and applications, (1996), 138.   Google Scholar

[18]

I. Melbourne and A. Windsor, A $C^\infty$ diffeomorphism with infinitely many intermingled basins,, Ergodic Theory Dynamical Systems, 25 (2005), 1951.  doi: 10.1017/S0143385705000325.  Google Scholar

[19]

Hiroyuki Nakajima and Yoshisuke Ueda, Riddled basins of the optimal states in learning dynamical systems,, Phys. D, 99 (1996), 35.  doi: 10.1016/S0167-2789(96)00131-5.  Google Scholar

[20]

E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer and J. A. Yorke, The transition to chaotic attractors with riddled basins,, Phys. D, 76 (1994), 384.  doi: 10.1016/0167-2789(94)90047-7.  Google Scholar

[21]

E. Ott, J. C. Sommerer, J. C. Alexander, I. Kan and J. A. Yorke, Scaling behavior of chaotic systems with riddled basins,, Phys. Rev. Lett., 71 (1993), 4134.  doi: 10.1103/PhysRevLett.71.4134.  Google Scholar

[22]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie complexe et systémes dynamiques (Orsay, (2000), 335.   Google Scholar

[23]

J. Palis and W. De Melo, "Geometric Theory of Dynamical Systems: An Introduction,", Translated from the Portuguese by A. K. Manning, (1982).   Google Scholar

[24]

T. N. Palmer, A local deterministic model of quantum spin measurement,, Proc. Roy. Soc. London Ser. A, 451 (1995), 585.  doi: 10.1098/rspa.1995.0145.  Google Scholar

[25]

M. W.Parker, Undecidability in $R^n$: riddled basins, the KAM tori, and the stability of the solar system,, Philos. Sci., 70 (2003), 359.  doi: 10.1086/375472.  Google Scholar

[26]

Ja. B. Pesin, Characteristic Ljapunov exponents, and ergodic properties of smooth dynamical systems with invariant measure,, (Russian) Dokl. Akad. Nauk SSSR, 226 (1976), 774.   Google Scholar

[27]

Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat, 40 (1976), 1332.   Google Scholar

[28]

Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory,, (Russian) Uspehi Mat. Nauk, 32 (1977), 55.   Google Scholar

[29]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[30]

A. Saito and K. Kaneko, Inaccessibility in decision procedures,, in, (2000), 215.   Google Scholar

[31]

A. Saito and K. Kaneko, Inaccessibility and undecidability in computation, geometry, and dynamical systems,, Phys. D, 155 (2001), 1.  doi: 10.1016/S0167-2789(01)00232-9.  Google Scholar

[32]

J. C. Sommerer and E. Ott, Intermingled basins of attraction: uncomputability in a simple physical system,, Phys. Lett. A, 214 (1996), 243.  doi: 10.1016/0375-9601(96)00165-X.  Google Scholar

[33]

S. van Strien, Transitive maps which are not ergodic with respect to Lebesgue measure,, Ergodic Theory Dynam. Systems, 16 (1996), 833.   Google Scholar

[34]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, (1982).   Google Scholar

[35]

A. Windsor, Minimal but not uniquely ergodic diffeomorphisms,, in, (1999), 809.   Google Scholar

[36]

A. Yakubu and C. Carlos, Interplay between local dynamics and dispersal in discrete-time metapopulation models,, Journal of Theoretical Biology, 218 (2002), 273.   Google Scholar

show all references

References:
[1]

J. C. Alexander, B. Hunt, I. Kan and J. A. Yorke, Intermingled basins for the triangle map,, Ergodic Theory and Dynamical Systems, 16 (1996), 651.  doi: 10.1017/S0143385700009020.  Google Scholar

[2]

J. C. Alexander, I. Kan, J. A. Yorke and Z. You, Riddled basins,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2 (1992), 795.   Google Scholar

[3]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory, Ergodic diffeomorphisms,, Trudy Moskov. Mat. Obšč, 23 (1970), 3.   Google Scholar

[4]

P. Ashwin, J. Buescu and I. Stewart, Bubbling of attractors and synchronisation of chaotic oscillators,, Phys. Lett. A, 193 (1994), 126.  doi: 10.1016/0375-9601(94)90947-4.  Google Scholar

[5]

L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", University Lecture Series 23, (2002).   Google Scholar

[6]

G. D. Birkhoff, Probability and physical systems,, Bull. Amer. Math. Soc., 38 (1932), 361.  doi: 10.1090/S0002-9904-1932-05389-7.  Google Scholar

[7]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting,, Israel Journal of Mathematics, 115 (2000), 157.  doi: 10.1007/BF02810585.  Google Scholar

[8]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[9]

M. Brin and G. Stuck, "Introduction to Dynamical Systems,", Cambridge University Press, (2002).   Google Scholar

[10]

K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity,, in, (1999), 327.   Google Scholar

[11]

B. Fayad, Topologically mixing flows with pure point spectrum,, in, (2003), 113.   Google Scholar

[12]

P. Grete and M. Markus, Residence time distributions for double-scroll attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1007.  doi: 10.1142/S0218127407017720.  Google Scholar

[13]

F. Hofbauer, J. Hofbauer, P. Raith and T. Steinberger, Intermingled basins in a two species system,, J. Math. Biol., 49 (2004), 293.  doi: 10.1007/s00285-003-0253-3.  Google Scholar

[14]

I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin,, Bull. Amer. Math. Soc., 31 (1994), 68.  doi: 10.1090/S0273-0979-1994-00507-5.  Google Scholar

[15]

T. Kapitaniak, Uncertainty in coupled chaotic systems: Locally intermingled basins of attraction,, Phys. Rev. E(3), 53 (1996), 6555.  doi: 10.1103/PhysRevE.53.6555.  Google Scholar

[16]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems, With a Supplementary Chapter by Katok and Leonardo Mendoza,", Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[17]

Y. C. Lai, C. Grebogi and J. A. Yorke, Intermingled basins and riddling bifurcation in chaotic dynamical systems,, Differential equations and applications, (1996), 138.   Google Scholar

[18]

I. Melbourne and A. Windsor, A $C^\infty$ diffeomorphism with infinitely many intermingled basins,, Ergodic Theory Dynamical Systems, 25 (2005), 1951.  doi: 10.1017/S0143385705000325.  Google Scholar

[19]

Hiroyuki Nakajima and Yoshisuke Ueda, Riddled basins of the optimal states in learning dynamical systems,, Phys. D, 99 (1996), 35.  doi: 10.1016/S0167-2789(96)00131-5.  Google Scholar

[20]

E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer and J. A. Yorke, The transition to chaotic attractors with riddled basins,, Phys. D, 76 (1994), 384.  doi: 10.1016/0167-2789(94)90047-7.  Google Scholar

[21]

E. Ott, J. C. Sommerer, J. C. Alexander, I. Kan and J. A. Yorke, Scaling behavior of chaotic systems with riddled basins,, Phys. Rev. Lett., 71 (1993), 4134.  doi: 10.1103/PhysRevLett.71.4134.  Google Scholar

[22]

J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors,, Géométrie complexe et systémes dynamiques (Orsay, (2000), 335.   Google Scholar

[23]

J. Palis and W. De Melo, "Geometric Theory of Dynamical Systems: An Introduction,", Translated from the Portuguese by A. K. Manning, (1982).   Google Scholar

[24]

T. N. Palmer, A local deterministic model of quantum spin measurement,, Proc. Roy. Soc. London Ser. A, 451 (1995), 585.  doi: 10.1098/rspa.1995.0145.  Google Scholar

[25]

M. W.Parker, Undecidability in $R^n$: riddled basins, the KAM tori, and the stability of the solar system,, Philos. Sci., 70 (2003), 359.  doi: 10.1086/375472.  Google Scholar

[26]

Ja. B. Pesin, Characteristic Ljapunov exponents, and ergodic properties of smooth dynamical systems with invariant measure,, (Russian) Dokl. Akad. Nauk SSSR, 226 (1976), 774.   Google Scholar

[27]

Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat, 40 (1976), 1332.   Google Scholar

[28]

Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory,, (Russian) Uspehi Mat. Nauk, 32 (1977), 55.   Google Scholar

[29]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[30]

A. Saito and K. Kaneko, Inaccessibility in decision procedures,, in, (2000), 215.   Google Scholar

[31]

A. Saito and K. Kaneko, Inaccessibility and undecidability in computation, geometry, and dynamical systems,, Phys. D, 155 (2001), 1.  doi: 10.1016/S0167-2789(01)00232-9.  Google Scholar

[32]

J. C. Sommerer and E. Ott, Intermingled basins of attraction: uncomputability in a simple physical system,, Phys. Lett. A, 214 (1996), 243.  doi: 10.1016/0375-9601(96)00165-X.  Google Scholar

[33]

S. van Strien, Transitive maps which are not ergodic with respect to Lebesgue measure,, Ergodic Theory Dynam. Systems, 16 (1996), 833.   Google Scholar

[34]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, (1982).   Google Scholar

[35]

A. Windsor, Minimal but not uniquely ergodic diffeomorphisms,, in, (1999), 809.   Google Scholar

[36]

A. Yakubu and C. Carlos, Interplay between local dynamics and dispersal in discrete-time metapopulation models,, Journal of Theoretical Biology, 218 (2002), 273.   Google Scholar

[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[3]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[9]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[10]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[11]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[14]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[15]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[16]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[17]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[18]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[20]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]