-
Previous Article
Boundary stabilization of the waves in partially rectangular domains
- DCDS Home
- This Issue
-
Next Article
SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms
Periodic solutions of Liénard equations with resonant isochronous potentials
1. | School of Mathematical Sciences, Capital Normal University, Beijing 100048, China, China |
References:
[1] |
J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.
doi: 10.1006/jdeq.1997.3367. |
[2] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.
|
[3] |
D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral equations, 15 (2002), 1139.
|
[4] |
A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.
doi: 10.1112/S0024610703004459. |
[5] |
A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc., 138A (2008), 15.
|
[6] |
A. Capietto, W. Dambrosio, T. Ma and Z. Wang, Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, Discrete Contin. Dynam. Systems, (). Google Scholar |
[7] |
N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.
doi: 10.1017/S0004972700022747. |
[8] |
P. O. Frederickson and A. C. Lazer, Necessary and sufficient damping in a second order oscillator,, J. Differential Equations, 5 (1969), 262.
|
[9] |
T. Ma and Z. Wang, Existence and infinity of periodic solutions of some second order differential equations with isochronous potentials,, Z. Angew. Math. Phys., 63 (2012), 25.
doi: 10.1007/s00033-011-0152-1. |
[10] |
T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,", Springer, (1975).
|
[11] |
C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.
doi: 10.1006/jdeq.1998.3441. |
[12] |
C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, J. Differential Equations, 214 (2005), 299.
doi: 10.1016/j.jde.2005.02.003. |
[13] |
C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.
doi: 10.1088/0951-7715/13/3/302. |
[14] |
A. Fonda and M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations,, J. Differential Equations, 250 (2011), 1052.
doi: 10.1016/j.jde.2010.08.006. |
[15] |
A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Diff. Eqns, 11 (2006), 1111.
|
[16] |
S. Fucik, "Solvability of Nonlinear Equations and Boundary Value Problems,", Reidel, (1980).
|
[17] |
A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillations at resonance,, Ann. Mat. Pura. Appl., 82 (1969), 49.
doi: 10.1007/BF02410787. |
[18] |
A. C. Lazer and P. J. McKenna, Existence, uniqueness and stability of oscillators in differential equations with asymmetric nonlinearities,, Trans. Amer. Math. Soc., 315 (1989), 721.
doi: 10.1090/S0002-9947-1989-0979963-1. |
[19] |
J. J. Landau and E. M. Lifshitz, "Mechanics, Course of Theoretical Physics,", Vol. 1, (1960).
|
[20] |
Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.
doi: 10.3934/dcds.2003.9.751. |
[21] |
D. Qian, Infinity of subharmonics for asymmetric Duffing equations with the Lazer-Leach-Dancer condition,, J. Differential Equations, 171 (2001), 233.
doi: 10.1006/jdeq.2000.3847. |
[22] |
M. Krasnosel'skii and P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).
|
show all references
References:
[1] |
J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.
doi: 10.1006/jdeq.1997.3367. |
[2] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.
|
[3] |
D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral equations, 15 (2002), 1139.
|
[4] |
A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.
doi: 10.1112/S0024610703004459. |
[5] |
A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc., 138A (2008), 15.
|
[6] |
A. Capietto, W. Dambrosio, T. Ma and Z. Wang, Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, Discrete Contin. Dynam. Systems, (). Google Scholar |
[7] |
N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.
doi: 10.1017/S0004972700022747. |
[8] |
P. O. Frederickson and A. C. Lazer, Necessary and sufficient damping in a second order oscillator,, J. Differential Equations, 5 (1969), 262.
|
[9] |
T. Ma and Z. Wang, Existence and infinity of periodic solutions of some second order differential equations with isochronous potentials,, Z. Angew. Math. Phys., 63 (2012), 25.
doi: 10.1007/s00033-011-0152-1. |
[10] |
T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,", Springer, (1975).
|
[11] |
C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.
doi: 10.1006/jdeq.1998.3441. |
[12] |
C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, J. Differential Equations, 214 (2005), 299.
doi: 10.1016/j.jde.2005.02.003. |
[13] |
C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.
doi: 10.1088/0951-7715/13/3/302. |
[14] |
A. Fonda and M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations,, J. Differential Equations, 250 (2011), 1052.
doi: 10.1016/j.jde.2010.08.006. |
[15] |
A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Diff. Eqns, 11 (2006), 1111.
|
[16] |
S. Fucik, "Solvability of Nonlinear Equations and Boundary Value Problems,", Reidel, (1980).
|
[17] |
A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillations at resonance,, Ann. Mat. Pura. Appl., 82 (1969), 49.
doi: 10.1007/BF02410787. |
[18] |
A. C. Lazer and P. J. McKenna, Existence, uniqueness and stability of oscillators in differential equations with asymmetric nonlinearities,, Trans. Amer. Math. Soc., 315 (1989), 721.
doi: 10.1090/S0002-9947-1989-0979963-1. |
[19] |
J. J. Landau and E. M. Lifshitz, "Mechanics, Course of Theoretical Physics,", Vol. 1, (1960).
|
[20] |
Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.
doi: 10.3934/dcds.2003.9.751. |
[21] |
D. Qian, Infinity of subharmonics for asymmetric Duffing equations with the Lazer-Leach-Dancer condition,, J. Differential Equations, 171 (2001), 233.
doi: 10.1006/jdeq.2000.3847. |
[22] |
M. Krasnosel'skii and P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).
|
[1] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[2] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[4] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[5] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[6] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[7] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[8] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[12] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[13] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[14] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[15] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[16] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[17] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[18] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[19] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[20] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]