April  2013, 33(4): 1563-1581. doi: 10.3934/dcds.2013.33.1563

Periodic solutions of Liénard equations with resonant isochronous potentials

1. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China, China

Received  September 2011 Revised  September 2012 Published  October 2012

In this paper, we study the existence and multiplicity of periodic solutions of Liénard equations $$ x''+f(x)x'+V'(x)+g(x)=p(t), $$ where $V$ is a $2\pi/n$-isochronous potential. When $F(F(x)=\int_0^xf(s)ds)$ and $g$ are bounded, we provide new sufficient conditions to ensure the existence of periodic solutions of this equations. Moreover, we prove the multiplicity of periodic solutions of the given equations under certain bounded conditions by using topological degree method. When $F, g$ satisfy a certain class of unbounded conditions, we also give sufficient conditions to ensure the existence of $2\pi$-periodic solutions of the given equations.
Citation: Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563
References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.   Google Scholar

[3]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral equations, 15 (2002), 1139.   Google Scholar

[4]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[5]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc., 138A (2008), 15.   Google Scholar

[6]

A. Capietto, W. Dambrosio, T. Ma and Z. Wang, Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, Discrete Contin. Dynam. Systems, ().   Google Scholar

[7]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.  doi: 10.1017/S0004972700022747.  Google Scholar

[8]

P. O. Frederickson and A. C. Lazer, Necessary and sufficient damping in a second order oscillator,, J. Differential Equations, 5 (1969), 262.   Google Scholar

[9]

T. Ma and Z. Wang, Existence and infinity of periodic solutions of some second order differential equations with isochronous potentials,, Z. Angew. Math. Phys., 63 (2012), 25.  doi: 10.1007/s00033-011-0152-1.  Google Scholar

[10]

T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,", Springer, (1975).   Google Scholar

[11]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[12]

C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, J. Differential Equations, 214 (2005), 299.  doi: 10.1016/j.jde.2005.02.003.  Google Scholar

[13]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[14]

A. Fonda and M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations,, J. Differential Equations, 250 (2011), 1052.  doi: 10.1016/j.jde.2010.08.006.  Google Scholar

[15]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Diff. Eqns, 11 (2006), 1111.   Google Scholar

[16]

S. Fucik, "Solvability of Nonlinear Equations and Boundary Value Problems,", Reidel, (1980).   Google Scholar

[17]

A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillations at resonance,, Ann. Mat. Pura. Appl., 82 (1969), 49.  doi: 10.1007/BF02410787.  Google Scholar

[18]

A. C. Lazer and P. J. McKenna, Existence, uniqueness and stability of oscillators in differential equations with asymmetric nonlinearities,, Trans. Amer. Math. Soc., 315 (1989), 721.  doi: 10.1090/S0002-9947-1989-0979963-1.  Google Scholar

[19]

J. J. Landau and E. M. Lifshitz, "Mechanics, Course of Theoretical Physics,", Vol. 1, (1960).   Google Scholar

[20]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[21]

D. Qian, Infinity of subharmonics for asymmetric Duffing equations with the Lazer-Leach-Dancer condition,, J. Differential Equations, 171 (2001), 233.  doi: 10.1006/jdeq.2000.3847.  Google Scholar

[22]

M. Krasnosel'skii and P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).   Google Scholar

show all references

References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.   Google Scholar

[3]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral equations, 15 (2002), 1139.   Google Scholar

[4]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[5]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc., 138A (2008), 15.   Google Scholar

[6]

A. Capietto, W. Dambrosio, T. Ma and Z. Wang, Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, Discrete Contin. Dynam. Systems, ().   Google Scholar

[7]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.  doi: 10.1017/S0004972700022747.  Google Scholar

[8]

P. O. Frederickson and A. C. Lazer, Necessary and sufficient damping in a second order oscillator,, J. Differential Equations, 5 (1969), 262.   Google Scholar

[9]

T. Ma and Z. Wang, Existence and infinity of periodic solutions of some second order differential equations with isochronous potentials,, Z. Angew. Math. Phys., 63 (2012), 25.  doi: 10.1007/s00033-011-0152-1.  Google Scholar

[10]

T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,", Springer, (1975).   Google Scholar

[11]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[12]

C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance,, J. Differential Equations, 214 (2005), 299.  doi: 10.1016/j.jde.2005.02.003.  Google Scholar

[13]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[14]

A. Fonda and M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations,, J. Differential Equations, 250 (2011), 1052.  doi: 10.1016/j.jde.2010.08.006.  Google Scholar

[15]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Diff. Eqns, 11 (2006), 1111.   Google Scholar

[16]

S. Fucik, "Solvability of Nonlinear Equations and Boundary Value Problems,", Reidel, (1980).   Google Scholar

[17]

A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillations at resonance,, Ann. Mat. Pura. Appl., 82 (1969), 49.  doi: 10.1007/BF02410787.  Google Scholar

[18]

A. C. Lazer and P. J. McKenna, Existence, uniqueness and stability of oscillators in differential equations with asymmetric nonlinearities,, Trans. Amer. Math. Soc., 315 (1989), 721.  doi: 10.1090/S0002-9947-1989-0979963-1.  Google Scholar

[19]

J. J. Landau and E. M. Lifshitz, "Mechanics, Course of Theoretical Physics,", Vol. 1, (1960).   Google Scholar

[20]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[21]

D. Qian, Infinity of subharmonics for asymmetric Duffing equations with the Lazer-Leach-Dancer condition,, J. Differential Equations, 171 (2001), 233.  doi: 10.1006/jdeq.2000.3847.  Google Scholar

[22]

M. Krasnosel'skii and P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).   Google Scholar

[1]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[6]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[7]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[8]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[15]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[16]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]