April  2013, 33(4): 1603-1614. doi: 10.3934/dcds.2013.33.1603

Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations

1. 

Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Av. Esteve Terradas 5, 08860 Castelldefels, Spain

2. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Received  October 2011 Revised  May 2012 Published  October 2012

This article provides sufficient conditions for the existence of periodic solutions with nonconstant sign in a family of polynomial, non-auto-nomous, first-order differential equations that arise as a generalization of the Abel equation of the second kind.
Citation: Josep M. Olm, Xavier Ros-Oton. Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1603-1614. doi: 10.3934/dcds.2013.33.1603
References:
[1]

P. J. Torres, Existence of closed solutions for a polynomial first order differential equation,, J. Math. Anal. Applic., 328 (2007), 1108.  doi: 10.1016/j.jmaa.2006.05.078.  Google Scholar

[2]

M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Applic., 329 (2007), 1161.  doi: 10.1016/j.jmaa.2006.07.039.  Google Scholar

[3]

A. D. Polyanin and V. F. Zaitsev, "Handbook of Exact Solutions for Ordinary Differential Equations,'', $2^{nd}$ edition, (2003).   Google Scholar

[4]

S. Smale, Mathematical problems for the next century,, Math. Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[5]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[6]

Yu. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions,, Nonlinearity, 13 (2000), 1337.  doi: 10.1088/0951-7715/13/4/319.  Google Scholar

[7]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[8]

J. L. Bravo and J. Torregrosa, Abel-like differential equations with no periodic solutions,, J. Math. Anal. Applic, 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[9]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[10]

M. A. M. Alwash, Polynomial differential equations with small coefficients,, Discrete Continuous Dynam. Systems - A, 25 (2009), 1129.  doi: 10.3934/dcds.2009.25.1129.  Google Scholar

[11]

N. H. M. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Continuous Dynam. Systems - A, 31 (2011), 25.  doi: 10.3934/dcds.2011.31.25.  Google Scholar

[12]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with nonconstant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[13]

E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a non-minimum phase bilinear system,, Discrete Continuous Dynam. Systems - B, 7 (2007), 53.   Google Scholar

[14]

J. M. Olm and X. Ros-Oton, Approximate tracking of periodic references in a class of bilinear systems via stable inversion,, Discrete Continuous Dynam. Systems - B, 15 (2011), 197.  doi: 10.3934/dcdsb.2011.15.197.  Google Scholar

[15]

A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some Ggeneralized Liénard equations,, J. Differential Equations, 185 (2002), 54.  doi: 10.1006/jdeq.2002.4172.  Google Scholar

[16]

A. Kelley, The stable, center-stable, center, center-unstable and unstable manifolds,, J. Differential Equations, 3 (1967), 546.   Google Scholar

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,'', $2^{nd}$ edition, (1985).   Google Scholar

show all references

References:
[1]

P. J. Torres, Existence of closed solutions for a polynomial first order differential equation,, J. Math. Anal. Applic., 328 (2007), 1108.  doi: 10.1016/j.jmaa.2006.05.078.  Google Scholar

[2]

M. A. M. Alwash, Periodic solutions of Abel differential equations,, J. Math. Anal. Applic., 329 (2007), 1161.  doi: 10.1016/j.jmaa.2006.07.039.  Google Scholar

[3]

A. D. Polyanin and V. F. Zaitsev, "Handbook of Exact Solutions for Ordinary Differential Equations,'', $2^{nd}$ edition, (2003).   Google Scholar

[4]

S. Smale, Mathematical problems for the next century,, Math. Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[5]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[6]

Yu. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions,, Nonlinearity, 13 (2000), 1337.  doi: 10.1088/0951-7715/13/4/319.  Google Scholar

[7]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[8]

J. L. Bravo and J. Torregrosa, Abel-like differential equations with no periodic solutions,, J. Math. Anal. Applic, 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[9]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[10]

M. A. M. Alwash, Polynomial differential equations with small coefficients,, Discrete Continuous Dynam. Systems - A, 25 (2009), 1129.  doi: 10.3934/dcds.2009.25.1129.  Google Scholar

[11]

N. H. M. Alkoumi and P. J. Torres, Estimates on the number of limit cycles of a generalized Abel equation,, Discrete Continuous Dynam. Systems - A, 31 (2011), 25.  doi: 10.3934/dcds.2011.31.25.  Google Scholar

[12]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with nonconstant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[13]

E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a non-minimum phase bilinear system,, Discrete Continuous Dynam. Systems - B, 7 (2007), 53.   Google Scholar

[14]

J. M. Olm and X. Ros-Oton, Approximate tracking of periodic references in a class of bilinear systems via stable inversion,, Discrete Continuous Dynam. Systems - B, 15 (2011), 197.  doi: 10.3934/dcdsb.2011.15.197.  Google Scholar

[15]

A. Gasull and H. Giacomini, A new criterion for controlling the number of limit cycles of some Ggeneralized Liénard equations,, J. Differential Equations, 185 (2002), 54.  doi: 10.1006/jdeq.2002.4172.  Google Scholar

[16]

A. Kelley, The stable, center-stable, center, center-unstable and unstable manifolds,, J. Differential Equations, 3 (1967), 546.   Google Scholar

[17]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,'', $2^{nd}$ edition, (1985).   Google Scholar

[1]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[2]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[13]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[18]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[19]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[20]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]