April  2013, 33(4): 1615-1631. doi: 10.3934/dcds.2013.33.1615

Fractal bodies invisible in 2 and 3 directions

1. 

Department of Mathematics, University of Aveiro, Aveiro 3810-193

2. 

Collaborative Research Network, University of Ballarat, VIC 3353, Australia

Received  October 2011 Revised  January 2012 Published  October 2012

We study the problem of invisibility for bodies with a mirror surface in the framework of geometrical optics. We show that for any two given directions it is possible to construct a two-dimensional fractal body invisible in these directions. Moreover, there exists a three-dimensional fractal body invisible in three orthogonal directions. The work continues the previous study in [1,12], where two-dimensional bodies invisible in one direction and three-dimensional bodies invisible in one and two orthogonal directions were constructed.
Citation: Alexander Plakhov, Vera Roshchina. Fractal bodies invisible in 2 and 3 directions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1615-1631. doi: 10.3934/dcds.2013.33.1615
References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247.  doi: 10.1088/0951-7715/22/6/001.  Google Scholar

[2]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33.   Google Scholar

[3]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Birkhäuser (2005)., (2005).   Google Scholar

[4]

G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance,, Math. Intell., 15 (1993), 7.  doi: 10.1007/BF03024318.  Google Scholar

[5]

M. Comte and T. Lachand-Robert, Newton's problem of the body of minimal resistance under a single-impact assumption,, Calc. Var. Partial Differ. Equ., 12 (2001), 173.  doi: 10.1007/PL00009911.  Google Scholar

[6]

T. Lachand-Robert and E. Oudet, Minimizing within convex bodies using a convex hull method,, SIAM J. Optim., 16 (2006), 368.  doi: 10.1137/040608039.  Google Scholar

[7]

T. Lachand-Robert and M. A. Peletier, Newton's problem of the body of minimal resistance in the class of convex developable functions,, Math. Nachr., 226 (2001), 153.  doi: 10.1002/1522-2616(200106)226:1<153::AID-MANA153>3.3.CO;2-U.  Google Scholar

[8]

I. Newton, Philosophiae naturalis principia mathematica,, (1687)., (1687).   Google Scholar

[9]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873.  doi: 10.1070/RM2009v064n05ABEH004642.  Google Scholar

[10]

A. Plakhov, Mathematical retroreflectors,, Discr. Contin. Dynam. Syst.-A, 30 (2011), 1211.  doi: 10.3934/dcds.2011.30.1211.  Google Scholar

[11]

A. Plakhov and A. Aleksenko, The problem of the body of revolution of minimal resistance,, ESAIM Control Optim. Calc. Var. 16 (2010), 16 (2010), 206.   Google Scholar

[12]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847.  doi: 10.1088/0951-7715/24/3/007.  Google Scholar

[13]

, "Invisibility,'', Wikipedia article. Available from: , ().   Google Scholar

[14]

, "Unsichtbarkeit,'', Wikipedia article. Available from: , ().   Google Scholar

show all references

References:
[1]

A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction,, Nonlinearity, 22 (2009), 1247.  doi: 10.1088/0951-7715/22/6/001.  Google Scholar

[2]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33.   Google Scholar

[3]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Birkhäuser (2005)., (2005).   Google Scholar

[4]

G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance,, Math. Intell., 15 (1993), 7.  doi: 10.1007/BF03024318.  Google Scholar

[5]

M. Comte and T. Lachand-Robert, Newton's problem of the body of minimal resistance under a single-impact assumption,, Calc. Var. Partial Differ. Equ., 12 (2001), 173.  doi: 10.1007/PL00009911.  Google Scholar

[6]

T. Lachand-Robert and E. Oudet, Minimizing within convex bodies using a convex hull method,, SIAM J. Optim., 16 (2006), 368.  doi: 10.1137/040608039.  Google Scholar

[7]

T. Lachand-Robert and M. A. Peletier, Newton's problem of the body of minimal resistance in the class of convex developable functions,, Math. Nachr., 226 (2001), 153.  doi: 10.1002/1522-2616(200106)226:1<153::AID-MANA153>3.3.CO;2-U.  Google Scholar

[8]

I. Newton, Philosophiae naturalis principia mathematica,, (1687)., (1687).   Google Scholar

[9]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873.  doi: 10.1070/RM2009v064n05ABEH004642.  Google Scholar

[10]

A. Plakhov, Mathematical retroreflectors,, Discr. Contin. Dynam. Syst.-A, 30 (2011), 1211.  doi: 10.3934/dcds.2011.30.1211.  Google Scholar

[11]

A. Plakhov and A. Aleksenko, The problem of the body of revolution of minimal resistance,, ESAIM Control Optim. Calc. Var. 16 (2010), 16 (2010), 206.   Google Scholar

[12]

A. Plakhov and V. Roshchina, Invisibility in billiards,, Nonlinearity, 24 (2011), 847.  doi: 10.1088/0951-7715/24/3/007.  Google Scholar

[13]

, "Invisibility,'', Wikipedia article. Available from: , ().   Google Scholar

[14]

, "Unsichtbarkeit,'', Wikipedia article. Available from: , ().   Google Scholar

[1]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[2]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[3]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[6]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[7]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[13]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[16]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[17]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[18]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]