April  2013, 33(4): 1645-1655. doi: 10.3934/dcds.2013.33.1645

Non-integrability of generalized Yang-Mills Hamiltonian system

1. 

College of Mathematics, & Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

2. 

College of Mathematics, Jilin University, Changchun 130012, China

Received  November 2011 Revised  May 2012 Published  October 2012

We show that the generalized Yang-Mills system with Hamiltonian $H=\frac12(y_1^2+y_2^2)+\frac12(ax_1^2+bx_2^2)+\frac14cx_1^4+\frac14dx_2^4+\frac12ex_1^2x_2^2$ is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) $e=0$, or (B) $c=d=e$, or (C) $a=b, e=3c=3d$, or (D) $b=4a, e=3c, d=8c$, or (E) $b=4a, e=6c, d=16c$, or (F) $b=4a, e=3d, c=8d$, or (G) $b=4a, e=6d, c=16d$. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
Citation: Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645
References:
[1]

P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.   Google Scholar

[3]

F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.   Google Scholar

[4]

G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.   Google Scholar

[5]

D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.  doi: 10.1007/s10765-007-0152-8.  Google Scholar

[6]

T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.   Google Scholar

[7]

R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.   Google Scholar

[8]

L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005).   Google Scholar

[9]

B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.  doi: 10.2307/2374806.  Google Scholar

[10]

A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.  doi: 10.1007/BF00692087.  Google Scholar

[11]

R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.   Google Scholar

[12]

G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888).   Google Scholar

[13]

J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.  doi: 10.1016/0370-1573(87)90089-5.  Google Scholar

[14]

S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.   Google Scholar

[15]

W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.   Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).   Google Scholar

[17]

A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.   Google Scholar

[18]

A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).   Google Scholar

[19]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248.   Google Scholar

[20]

J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989).   Google Scholar

[21]

J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.   Google Scholar

[22]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).   Google Scholar

[23]

J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.   Google Scholar

[24]

J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.   Google Scholar

[25]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.   Google Scholar

[26]

J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.   Google Scholar

[27]

E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936).   Google Scholar

[28]

R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950.   Google Scholar

[29]

Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).   Google Scholar

[30]

P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.  doi: 10.1016/0165-0270(94)90123-6.  Google Scholar

[31]

E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969).   Google Scholar

[32]

V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39.   Google Scholar

[33]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

show all references

References:
[1]

P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.   Google Scholar

[3]

F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.   Google Scholar

[4]

G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.   Google Scholar

[5]

D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.  doi: 10.1007/s10765-007-0152-8.  Google Scholar

[6]

T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.   Google Scholar

[7]

R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.   Google Scholar

[8]

L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005).   Google Scholar

[9]

B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.  doi: 10.2307/2374806.  Google Scholar

[10]

A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.  doi: 10.1007/BF00692087.  Google Scholar

[11]

R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.   Google Scholar

[12]

G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888).   Google Scholar

[13]

J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.  doi: 10.1016/0370-1573(87)90089-5.  Google Scholar

[14]

S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.   Google Scholar

[15]

W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.   Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).   Google Scholar

[17]

A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.   Google Scholar

[18]

A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).   Google Scholar

[19]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248.   Google Scholar

[20]

J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989).   Google Scholar

[21]

J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.   Google Scholar

[22]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).   Google Scholar

[23]

J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.   Google Scholar

[24]

J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.   Google Scholar

[25]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.   Google Scholar

[26]

J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.   Google Scholar

[27]

E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936).   Google Scholar

[28]

R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950.   Google Scholar

[29]

Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).   Google Scholar

[30]

P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.  doi: 10.1016/0165-0270(94)90123-6.  Google Scholar

[31]

E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969).   Google Scholar

[32]

V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39.   Google Scholar

[33]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[4]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[5]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[11]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[17]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]