-
Previous Article
Well-posedness for a modified two-component Camassa-Holm system in critical spaces
- DCDS Home
- This Issue
-
Next Article
Non-integrability of generalized Yang-Mills Hamiltonian system
Sobolev approximation for two-phase solutions of forward-backward parabolic problems
1. | Dipartimento di Matematica "G. Castelnuovo,", Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy, Italy |
References:
[1] |
G. Anzellotti, Pairings between measures and functions and compensated compactness, Ann. Mat. Pura ed Appl., 135 (1983), 293-318.
doi: 10.1007/BF01781073. |
[2] |
G. I. Barenblatt, M. Bertsch, R. Dal Passo and M. Ughi, A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24 (1993), 1414-1439.
doi: 10.1137/0524082. |
[3] |
G. Bellettini, G. Fusco and N. Guglielmi, A concept of solution and numerical experiments for forward-backward diffusion equations, Discrete Contin. Dyn. Syst., 16 (2006), 783-842.
doi: 10.3934/dcds.2006.16.783. |
[4] |
K. Binder, H. L. Frisch and J. Jäckle, Kinetics of phase separation in the presence of slowly relaxing structural variables, J. Chem. Phys., 85 (1986), 1505-1512.
doi: 10.1063/1.451190. |
[5] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Applied Mathematical Sciences, 121, Springer-Verlag, New-York, 1996. |
[6] |
G. Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.
doi: 10.1007/s002050050146. |
[7] |
A. De Pablo and J. L. Vazquez, Regularity of solutions and interfaces of a generalized porous medium equation in $\mathbbR^N$, Ann. Mat. Pure Appl., 58 (1991), 51-74.
doi: 10.1007/BF01759299. |
[8] |
L. C. Evans and M. Portilheiro, Irreversibility and hysteresis for a forward-backward diffusion equation, Math. Mod. Meth. Appl. Sci., 14 (2004), 1599-1620.
doi: 10.1142/S0218202504003763. |
[9] |
P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differential Equations, 48 (2000), pp. 26. |
[10] |
H. L. Frisch and J. Jäckle, Properties of a generalized diffusion equation with memory, J. Chem. Phys., 85 (1986), 1621-1627.
doi: 10.1063/1.451204. |
[11] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192.
doi: 10.1016/0167-2789(95)00173-5. |
[12] |
M. Ghisi and M. Gobbino, Gradient estimates for the Perona-Malik equation, Math. Ann., 337 (2007), 557-590.
doi: 10.1007/s00208-006-0047-1. |
[13] |
B. H. Gilding and A. Tesei, The Riemann problem for a forward-backward parabolic equation, Phys. D, 239 (2010), 291-311.
doi: 10.1016/j.physd.2009.10.006. |
[14] |
K. Höllig, Existence of infinitely many solutions for a forward backward heat equation, Trans. Amer. Math. Soc., 278 (1983), 299-316.
doi: 10.2307/1999317. |
[15] |
K. Höllig and J. A. Nohel, A diffusion equation with a nonmonotone constitutive function, in "Systems of Nonlinear Partial Differential Equations'' , Reidel, Dordrecht-Boston, Mass., (1983), 409-422. |
[16] |
P. Lafitte and C. Mascia, Numerical exploration of a forward-backward diffusion equation, Math. Models Methods. Appl. Sci., 22 (2012), 1250004 pp. 33. |
[17] |
O. A. Ladyzenskaja ,V. A. Solonnikov and N. N. Ural&ceva, "Linear and Quasi-linear Equations of Parabolic Type,'' Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R. I., 1967 |
[18] |
H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 401-441. |
[19] |
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equation, Arch. Rational Mech. Anal., 163 (2002), 87-124 |
[20] |
C. Mascia, A. Terracina and A. Tesei, Evolution of stable phases in forward-backward parabolic equations, in "Asymptotic Analysis and Singularities'' (edited by H. Kozono, T. Ogawa, K. Tanaka, Y. Tsutsumi and E. Yanagida), Advanced Studies in Pure Mathematics 47-2, Math. Soc. Japan, (2007), 451-478 |
[21] |
C. Mascia, A. Terracina and A. Tesei, Two-phase entropy solutions of a forward-backward parabolic equation, Arch. Ration. Mech., 194 (2009), 887-925.
doi: 10.1007/s00205-008-0185-6. |
[22] |
A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation, Trans. Amer. Math. Soc., 324 (1991), 331-351.
doi: 10.1090/S0002-9947-1991-1015926-7. |
[23] |
V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Comm. Partial Differential Equations, 23 (1998), 457-486.
doi: 10.1080/03605309808821353. |
[24] |
P. I. Plotnikov, Passing to the limit with respect to viscosity in an equation with variable parabolicity direction, Diff. Equ., 30 (1994), 614-622. |
[25] |
P. I. Plotnikov, Equations with alternating direction of parabolicity and the hysteresis effect, Russian Acad. Sci., Dokl., Math., 47 (1993), 604-608. |
[26] |
P. I. Plotnikov, Forward-backward parabolic equations and hysteresis, J. Math. Sci., 93 (1999), 747-766.
doi: 10.1007/BF02366851. |
[27] |
F. Smarrazzo, On a class of equations with variable parabolicity direction, Discrete Contin. Dyn. Syst., 22 (2007), 729-758.
doi: 10.3934/dcds.2008.22.729. |
[28] |
F. Smarrazzo, Long-time behaviour of two-phase solutions to a class of forward-backward parabolic equations, Interface and Free Boundaries, 12 (2010), 369-408.
doi: 10.4171/IFB/239. |
[29] |
F. Smarrazzo and A. Tesei, Long-time behaviour of solutions to a class of forward-backward parabolic equations, SIAM J. Math. Anal., 42 (2010), 1046-1093.
doi: 10.1137/090763561. |
[30] |
A. Terracina, Qualitative behavior of the two-phase entropy solution of a forward-backward parabolic problem, SIAM J. Math. Anal., 43 (2011), 228-252.
doi: 10.1137/090778833. |
[31] |
J. L. Vázquez, "Porous Medium Equation. Mathematical Theory,'' Oxford University Press, Oxford, 2006 |
[32] |
A. Visintin, Forward-backward parabolic equations and hysteresis, Calc. Var. Partial Differential Equations, 15 (2002), 115-132.
doi: 10.1007/s005260100120. |
[33] |
K. Zhang, Existence of infinitely many solutions for the one-dimensional Perona-Malik model, Calc. Var., 26 (2006), 171-199.
doi: 10.1007/s00526-005-0363-4. |
show all references
References:
[1] |
G. Anzellotti, Pairings between measures and functions and compensated compactness, Ann. Mat. Pura ed Appl., 135 (1983), 293-318.
doi: 10.1007/BF01781073. |
[2] |
G. I. Barenblatt, M. Bertsch, R. Dal Passo and M. Ughi, A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24 (1993), 1414-1439.
doi: 10.1137/0524082. |
[3] |
G. Bellettini, G. Fusco and N. Guglielmi, A concept of solution and numerical experiments for forward-backward diffusion equations, Discrete Contin. Dyn. Syst., 16 (2006), 783-842.
doi: 10.3934/dcds.2006.16.783. |
[4] |
K. Binder, H. L. Frisch and J. Jäckle, Kinetics of phase separation in the presence of slowly relaxing structural variables, J. Chem. Phys., 85 (1986), 1505-1512.
doi: 10.1063/1.451190. |
[5] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Applied Mathematical Sciences, 121, Springer-Verlag, New-York, 1996. |
[6] |
G. Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.
doi: 10.1007/s002050050146. |
[7] |
A. De Pablo and J. L. Vazquez, Regularity of solutions and interfaces of a generalized porous medium equation in $\mathbbR^N$, Ann. Mat. Pure Appl., 58 (1991), 51-74.
doi: 10.1007/BF01759299. |
[8] |
L. C. Evans and M. Portilheiro, Irreversibility and hysteresis for a forward-backward diffusion equation, Math. Mod. Meth. Appl. Sci., 14 (2004), 1599-1620.
doi: 10.1142/S0218202504003763. |
[9] |
P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differential Equations, 48 (2000), pp. 26. |
[10] |
H. L. Frisch and J. Jäckle, Properties of a generalized diffusion equation with memory, J. Chem. Phys., 85 (1986), 1621-1627.
doi: 10.1063/1.451204. |
[11] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192.
doi: 10.1016/0167-2789(95)00173-5. |
[12] |
M. Ghisi and M. Gobbino, Gradient estimates for the Perona-Malik equation, Math. Ann., 337 (2007), 557-590.
doi: 10.1007/s00208-006-0047-1. |
[13] |
B. H. Gilding and A. Tesei, The Riemann problem for a forward-backward parabolic equation, Phys. D, 239 (2010), 291-311.
doi: 10.1016/j.physd.2009.10.006. |
[14] |
K. Höllig, Existence of infinitely many solutions for a forward backward heat equation, Trans. Amer. Math. Soc., 278 (1983), 299-316.
doi: 10.2307/1999317. |
[15] |
K. Höllig and J. A. Nohel, A diffusion equation with a nonmonotone constitutive function, in "Systems of Nonlinear Partial Differential Equations'' , Reidel, Dordrecht-Boston, Mass., (1983), 409-422. |
[16] |
P. Lafitte and C. Mascia, Numerical exploration of a forward-backward diffusion equation, Math. Models Methods. Appl. Sci., 22 (2012), 1250004 pp. 33. |
[17] |
O. A. Ladyzenskaja ,V. A. Solonnikov and N. N. Ural&ceva, "Linear and Quasi-linear Equations of Parabolic Type,'' Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R. I., 1967 |
[18] |
H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 401-441. |
[19] |
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equation, Arch. Rational Mech. Anal., 163 (2002), 87-124 |
[20] |
C. Mascia, A. Terracina and A. Tesei, Evolution of stable phases in forward-backward parabolic equations, in "Asymptotic Analysis and Singularities'' (edited by H. Kozono, T. Ogawa, K. Tanaka, Y. Tsutsumi and E. Yanagida), Advanced Studies in Pure Mathematics 47-2, Math. Soc. Japan, (2007), 451-478 |
[21] |
C. Mascia, A. Terracina and A. Tesei, Two-phase entropy solutions of a forward-backward parabolic equation, Arch. Ration. Mech., 194 (2009), 887-925.
doi: 10.1007/s00205-008-0185-6. |
[22] |
A. Novick-Cohen and R. L. Pego, Stable patterns in a viscous diffusion equation, Trans. Amer. Math. Soc., 324 (1991), 331-351.
doi: 10.1090/S0002-9947-1991-1015926-7. |
[23] |
V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Comm. Partial Differential Equations, 23 (1998), 457-486.
doi: 10.1080/03605309808821353. |
[24] |
P. I. Plotnikov, Passing to the limit with respect to viscosity in an equation with variable parabolicity direction, Diff. Equ., 30 (1994), 614-622. |
[25] |
P. I. Plotnikov, Equations with alternating direction of parabolicity and the hysteresis effect, Russian Acad. Sci., Dokl., Math., 47 (1993), 604-608. |
[26] |
P. I. Plotnikov, Forward-backward parabolic equations and hysteresis, J. Math. Sci., 93 (1999), 747-766.
doi: 10.1007/BF02366851. |
[27] |
F. Smarrazzo, On a class of equations with variable parabolicity direction, Discrete Contin. Dyn. Syst., 22 (2007), 729-758.
doi: 10.3934/dcds.2008.22.729. |
[28] |
F. Smarrazzo, Long-time behaviour of two-phase solutions to a class of forward-backward parabolic equations, Interface and Free Boundaries, 12 (2010), 369-408.
doi: 10.4171/IFB/239. |
[29] |
F. Smarrazzo and A. Tesei, Long-time behaviour of solutions to a class of forward-backward parabolic equations, SIAM J. Math. Anal., 42 (2010), 1046-1093.
doi: 10.1137/090763561. |
[30] |
A. Terracina, Qualitative behavior of the two-phase entropy solution of a forward-backward parabolic problem, SIAM J. Math. Anal., 43 (2011), 228-252.
doi: 10.1137/090778833. |
[31] |
J. L. Vázquez, "Porous Medium Equation. Mathematical Theory,'' Oxford University Press, Oxford, 2006 |
[32] |
A. Visintin, Forward-backward parabolic equations and hysteresis, Calc. Var. Partial Differential Equations, 15 (2002), 115-132.
doi: 10.1007/s005260100120. |
[33] |
K. Zhang, Existence of infinitely many solutions for the one-dimensional Perona-Malik model, Calc. Var., 26 (2006), 171-199.
doi: 10.1007/s00526-005-0363-4. |
[1] |
Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941 |
[2] |
Fabio Paronetto. Elliptic approximation of forward-backward parabolic equations. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1017-1036. doi: 10.3934/cpaa.2020047 |
[3] |
Jérémi Dardé, Sylvain Ervedoza. Backward uniqueness results for some parabolic equations in an infinite rod. Mathematical Control and Related Fields, 2019, 9 (4) : 673-696. doi: 10.3934/mcrf.2019046 |
[4] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[5] |
Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control and Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019 |
[6] |
Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277 |
[7] |
Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507 |
[8] |
G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783 |
[9] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[10] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 |
[11] |
Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022011 |
[12] |
Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893 |
[13] |
Dinh Nguyen Duy Hai. Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1715-1734. doi: 10.3934/cpaa.2022043 |
[14] |
Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721 |
[15] |
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 |
[16] |
Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591 |
[17] |
Dominique Blanchard, Olivier Guibé, Hicham Redwane. Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (1) : 197-217. doi: 10.3934/cpaa.2016.15.197 |
[18] |
Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118 |
[19] |
Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295 |
[20] |
Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1893-1906. doi: 10.3934/cpaa.2021051 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]