April  2013, 33(4): 1713-1739. doi: 10.3934/dcds.2013.33.1713

Global conservative and dissipative solutions of the generalized Camassa-Holm equation

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China, China

Received  November 2011 Revised  February 2012 Published  October 2012

This paper is devoted to the continuation of solutions to the generalized Camassa-Holm equation beyond wave breaking. By introducing a new set of independent and dependent variables, the evolution problem is rewritten as a semilinear system. This formulation allows one to continue the solution after collision time, giving either a global conservative solution where the energy is conserved for almost all times or a dissipative solution where energy may vanish from the system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we obtain a semigroup of global conservative or dissipative solutions, which depend continuously on the initial data.
Citation: Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713
References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.   Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.   Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.   Google Scholar

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.   Google Scholar

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.   Google Scholar

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.   Google Scholar

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.   Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.   Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.   Google Scholar

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.   Google Scholar

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.   Google Scholar

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.   Google Scholar

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.   Google Scholar

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.   Google Scholar

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).   Google Scholar

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.   Google Scholar

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.   Google Scholar

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.   Google Scholar

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.  doi: 10.2991/jnmp.2003.10.1.2.  Google Scholar

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.   Google Scholar

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.   Google Scholar

show all references

References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.   Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.   Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.   Google Scholar

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.   Google Scholar

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.   Google Scholar

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.   Google Scholar

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.   Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.   Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.   Google Scholar

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.   Google Scholar

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.   Google Scholar

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.   Google Scholar

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.   Google Scholar

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.   Google Scholar

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).   Google Scholar

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.   Google Scholar

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.   Google Scholar

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.   Google Scholar

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.  doi: 10.2991/jnmp.2003.10.1.2.  Google Scholar

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.   Google Scholar

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.   Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[9]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[10]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[13]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[14]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[15]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[16]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[17]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[18]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[19]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[20]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]