- Previous Article
- DCDS Home
- This Issue
-
Next Article
Well-posedness for a modified two-component Camassa-Holm system in critical spaces
Global conservative and dissipative solutions of the generalized Camassa-Holm equation
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China, China |
References:
[1] |
R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.
|
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.
|
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[4] |
A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.
|
[5] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.
|
[6] |
A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.
|
[7] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
|
[8] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.
doi: 10.1016/S0065-2156(08)70254-0. |
[9] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.
|
[10] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
|
[11] |
A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.
|
[12] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
|
[13] |
A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.
doi: 10.1016/S0375-9601(00)00255-3. |
[14] |
A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.
|
[15] |
H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.
doi: 10.1098/rspa.2000.0520. |
[16] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.
|
[17] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.
|
[18] |
H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.
|
[19] |
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.
|
[20] |
J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.
doi: 10.1088/0305-4470/38/4/007. |
[21] |
O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.
|
[22] |
O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.
|
[23] |
O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).
|
[24] |
O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.
|
[25] |
L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.
|
[26] |
J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.
|
[27] |
Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.
doi: 10.2991/jnmp.2003.10.1.2. |
[28] |
Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.
|
[29] |
Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.
|
show all references
References:
[1] |
R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.
|
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.
|
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[4] |
A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.
|
[5] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.
|
[6] |
A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.
|
[7] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.
|
[8] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.
doi: 10.1016/S0065-2156(08)70254-0. |
[9] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.
|
[10] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.
|
[11] |
A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.
|
[12] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
|
[13] |
A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.
doi: 10.1016/S0375-9601(00)00255-3. |
[14] |
A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.
|
[15] |
H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.
doi: 10.1098/rspa.2000.0520. |
[16] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.
|
[17] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.
|
[18] |
H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.
|
[19] |
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.
|
[20] |
J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.
doi: 10.1088/0305-4470/38/4/007. |
[21] |
O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.
|
[22] |
O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.
|
[23] |
O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).
|
[24] |
O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.
|
[25] |
L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.
|
[26] |
J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.
|
[27] |
Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.
doi: 10.2991/jnmp.2003.10.1.2. |
[28] |
Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.
|
[29] |
Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.
|
[1] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[2] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[3] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[4] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[5] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[6] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[9] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[10] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[11] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[12] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[13] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[14] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[15] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[16] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[17] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[18] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[19] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[20] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]