-
Previous Article
Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
- DCDS Home
- This Issue
-
Next Article
Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation
Characterizations of $\omega$-limit sets in topologically hyperbolic systems
1. | Heilbronn Institute of Mathematical Research, University of Bristol, Howard House, Queens Avenue, Bristol, BS8 1SN, United Kingdom |
2. | School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom |
3. | Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków |
4. | Department of Mathematics, Baylor University, Waco, TX 76798–7328, United States |
References:
[1] |
S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous functions,, Real Analysis Exchange, 15 (): 483.
|
[2] |
North-Holland Publishing Co., Amsterdam, 1994. |
[3] |
Acta Mathematica Hungarica, 88 (2000), 291-300.
doi: 10.1023/A:1026775906693. |
[4] |
Fundamenta Mathematicae, 207 (2010), 161-174.
doi: 10.4064/fm207-2-4. |
[5] |
Ergodic Theory and Dynamical Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[6] |
Springer-Verlag, Berlin, 1992. |
[7] |
Transactions of the American Mathematical Society, 348 (1996), 1357-1372.
doi: 10.1090/S0002-9947-96-01600-5. |
[8] |
Journal of Differential Equations, 18 (1975), 333-339. |
[9] |
Ergodic Theory and Dynamical Systems, 13 (1993), 7-19.
doi: 10.1017/S0143385700007173. |
[10] |
Proceedings of the American Mathematical Society, 113 (1991), 251-263.
doi: 10.2307/2048466. |
[11] |
Birkhäuser, Boston MA, 1980. |
[12] |
Transactions of the American Mathematical Society, 308 (1988), 227-241.
doi: 10.2307/2000960. |
[13] |
Springer-Verlag, Berlin, 1993. |
[14] |
Fundamenta Mathematicae, 192 (2006), 267-289.
doi: 10.4064/fm192-3-6. |
[15] |
Fundamenta Mathematicae, 205 (2009), 179-189.
doi: 10.4064/fm205-2-6. |
[16] |
Journal of Dynamics and Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[17] |
Fundamenta Informaticae, 84 (2008), 375-390. |
[18] |
Fundamenta Mathematicae, 212 (2011), 35-52.
doi: 10.4064/fm212-1-3. |
[19] |
Société Mathématique de France, Paris, 2003. |
[20] |
Discrete and Continuous Dynamical Systems. Series A, 13 (2005), 533-540.
doi: 10.3934/dcds.2005.13.533. |
[21] |
Communications in Mathematical Physics, 99 (1985), 177-195. |
[22] |
Topology and Its Applications, 23 (1986), 87-90.
doi: 10.1016/0166-8641(86)90019-2. |
[23] |
Australian Mathematical Society Journal, Series A, 61 (1996), 57-72. |
[24] |
Transactions of the American Mathematical Society, 122 (1966), 368-378. |
[25] |
Springer-Verlag, Berlin, 1999. |
[26] |
Cambridge University Press, Cambridge, 2010. |
[27] |
International Journal of Mathematics and Mathematical Sciences, 53-56 (2004), 2907-2910.
doi: 10.1155/S0161171204312184. |
[28] |
Topology and Its Applications, 131 (2003), 15-31.
doi: 10.1016/S0166-8641(02)00260-2. |
[29] |
Ukrainskiĭ Matematicheskiĭ Zhurnal, 18 (1966), 127-130. |
[30] |
Doklady Akademii Nauk SSSR, 160 (1965), 1036-1038. |
[31] |
in "The Structure of Attractors in Dynamical Systems," Springer, Berlin, (1978). |
[32] |
Northeastern Mathematical Journal, 17 (2001), 120-126. |
show all references
References:
[1] |
S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous functions,, Real Analysis Exchange, 15 (): 483.
|
[2] |
North-Holland Publishing Co., Amsterdam, 1994. |
[3] |
Acta Mathematica Hungarica, 88 (2000), 291-300.
doi: 10.1023/A:1026775906693. |
[4] |
Fundamenta Mathematicae, 207 (2010), 161-174.
doi: 10.4064/fm207-2-4. |
[5] |
Ergodic Theory and Dynamical Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[6] |
Springer-Verlag, Berlin, 1992. |
[7] |
Transactions of the American Mathematical Society, 348 (1996), 1357-1372.
doi: 10.1090/S0002-9947-96-01600-5. |
[8] |
Journal of Differential Equations, 18 (1975), 333-339. |
[9] |
Ergodic Theory and Dynamical Systems, 13 (1993), 7-19.
doi: 10.1017/S0143385700007173. |
[10] |
Proceedings of the American Mathematical Society, 113 (1991), 251-263.
doi: 10.2307/2048466. |
[11] |
Birkhäuser, Boston MA, 1980. |
[12] |
Transactions of the American Mathematical Society, 308 (1988), 227-241.
doi: 10.2307/2000960. |
[13] |
Springer-Verlag, Berlin, 1993. |
[14] |
Fundamenta Mathematicae, 192 (2006), 267-289.
doi: 10.4064/fm192-3-6. |
[15] |
Fundamenta Mathematicae, 205 (2009), 179-189.
doi: 10.4064/fm205-2-6. |
[16] |
Journal of Dynamics and Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[17] |
Fundamenta Informaticae, 84 (2008), 375-390. |
[18] |
Fundamenta Mathematicae, 212 (2011), 35-52.
doi: 10.4064/fm212-1-3. |
[19] |
Société Mathématique de France, Paris, 2003. |
[20] |
Discrete and Continuous Dynamical Systems. Series A, 13 (2005), 533-540.
doi: 10.3934/dcds.2005.13.533. |
[21] |
Communications in Mathematical Physics, 99 (1985), 177-195. |
[22] |
Topology and Its Applications, 23 (1986), 87-90.
doi: 10.1016/0166-8641(86)90019-2. |
[23] |
Australian Mathematical Society Journal, Series A, 61 (1996), 57-72. |
[24] |
Transactions of the American Mathematical Society, 122 (1966), 368-378. |
[25] |
Springer-Verlag, Berlin, 1999. |
[26] |
Cambridge University Press, Cambridge, 2010. |
[27] |
International Journal of Mathematics and Mathematical Sciences, 53-56 (2004), 2907-2910.
doi: 10.1155/S0161171204312184. |
[28] |
Topology and Its Applications, 131 (2003), 15-31.
doi: 10.1016/S0166-8641(02)00260-2. |
[29] |
Ukrainskiĭ Matematicheskiĭ Zhurnal, 18 (1966), 127-130. |
[30] |
Doklady Akademii Nauk SSSR, 160 (1965), 1036-1038. |
[31] |
in "The Structure of Attractors in Dynamical Systems," Springer, Berlin, (1978). |
[32] |
Northeastern Mathematical Journal, 17 (2001), 120-126. |
[1] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021040 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[4] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[5] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[6] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[7] |
Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007 |
[8] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[9] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[10] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[11] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[12] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[13] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[14] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[15] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[16] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[17] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[18] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[19] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[20] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]