• Previous Article
    Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
  • DCDS Home
  • This Issue
  • Next Article
    Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation
May  2013, 33(5): 1819-1833. doi: 10.3934/dcds.2013.33.1819

Characterizations of $\omega$-limit sets in topologically hyperbolic systems

1. 

Heilbronn Institute of Mathematical Research, University of Bristol, Howard House, Queens Avenue, Bristol, BS8 1SN, United Kingdom

2. 

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom

3. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków

4. 

Department of Mathematics, Baylor University, Waco, TX 76798–7328, United States

Received  December 2011 Revised  May 2012 Published  December 2012

It is well known that $\omega$-limit sets are internally chain transitive and have weak incompressibility; the converse is not generally true, in either case. However, it has been shown that a set is weakly incompressible if and only if it is an abstract $\omega$-limit set, and separately that in shifts of finite type, a set is internally chain transitive if and only if it is a (regular) $\omega$-limit set. In this paper we generalise these and other results, proving that the characterization for shifts of finite type holds in a variety of topologically hyperbolic systems (defined in terms of expansive and shadowing properties), and also show that the notions of internal chain transitivity and weak incompressibility coincide in compact metric spaces.
Citation: Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819
References:
[1]

S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous functions,, Real Analysis Exchange, 15 (): 483.   Google Scholar

[2]

North-Holland Publishing Co., Amsterdam, 1994.  Google Scholar

[3]

Acta Mathematica Hungarica, 88 (2000), 291-300. doi: 10.1023/A:1026775906693.  Google Scholar

[4]

Fundamenta Mathematicae, 207 (2010), 161-174. doi: 10.4064/fm207-2-4.  Google Scholar

[5]

Ergodic Theory and Dynamical Systems, 30 (2010), 21-31. doi: 10.1017/S0143385708001089.  Google Scholar

[6]

Springer-Verlag, Berlin, 1992.  Google Scholar

[7]

Transactions of the American Mathematical Society, 348 (1996), 1357-1372. doi: 10.1090/S0002-9947-96-01600-5.  Google Scholar

[8]

Journal of Differential Equations, 18 (1975), 333-339.  Google Scholar

[9]

Ergodic Theory and Dynamical Systems, 13 (1993), 7-19. doi: 10.1017/S0143385700007173.  Google Scholar

[10]

Proceedings of the American Mathematical Society, 113 (1991), 251-263. doi: 10.2307/2048466.  Google Scholar

[11]

Birkhäuser, Boston MA, 1980.  Google Scholar

[12]

Transactions of the American Mathematical Society, 308 (1988), 227-241. doi: 10.2307/2000960.  Google Scholar

[13]

Springer-Verlag, Berlin, 1993.  Google Scholar

[14]

Fundamenta Mathematicae, 192 (2006), 267-289. doi: 10.4064/fm192-3-6.  Google Scholar

[15]

Fundamenta Mathematicae, 205 (2009), 179-189. doi: 10.4064/fm205-2-6.  Google Scholar

[16]

Journal of Dynamics and Differential Equations, 13 (2001), 107-131. doi: 10.1023/A:1009044515567.  Google Scholar

[17]

Fundamenta Informaticae, 84 (2008), 375-390.  Google Scholar

[18]

Fundamenta Mathematicae, 212 (2011), 35-52. doi: 10.4064/fm212-1-3.  Google Scholar

[19]

Société Mathématique de France, Paris, 2003.  Google Scholar

[20]

Discrete and Continuous Dynamical Systems. Series A, 13 (2005), 533-540. doi: 10.3934/dcds.2005.13.533.  Google Scholar

[21]

Communications in Mathematical Physics, 99 (1985), 177-195.  Google Scholar

[22]

Topology and Its Applications, 23 (1986), 87-90. doi: 10.1016/0166-8641(86)90019-2.  Google Scholar

[23]

Australian Mathematical Society Journal, Series A, 61 (1996), 57-72.  Google Scholar

[24]

Transactions of the American Mathematical Society, 122 (1966), 368-378.  Google Scholar

[25]

Springer-Verlag, Berlin, 1999.  Google Scholar

[26]

Cambridge University Press, Cambridge, 2010.  Google Scholar

[27]

International Journal of Mathematics and Mathematical Sciences, 53-56 (2004), 2907-2910. doi: 10.1155/S0161171204312184.  Google Scholar

[28]

Topology and Its Applications, 131 (2003), 15-31. doi: 10.1016/S0166-8641(02)00260-2.  Google Scholar

[29]

Ukrainskiĭ Matematicheskiĭ Zhurnal, 18 (1966), 127-130.  Google Scholar

[30]

Doklady Akademii Nauk SSSR, 160 (1965), 1036-1038.  Google Scholar

[31]

in "The Structure of Attractors in Dynamical Systems," Springer, Berlin, (1978).  Google Scholar

[32]

Northeastern Mathematical Journal, 17 (2001), 120-126.  Google Scholar

show all references

References:
[1]

S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of $\omega$-limit sets for continuous functions,, Real Analysis Exchange, 15 (): 483.   Google Scholar

[2]

North-Holland Publishing Co., Amsterdam, 1994.  Google Scholar

[3]

Acta Mathematica Hungarica, 88 (2000), 291-300. doi: 10.1023/A:1026775906693.  Google Scholar

[4]

Fundamenta Mathematicae, 207 (2010), 161-174. doi: 10.4064/fm207-2-4.  Google Scholar

[5]

Ergodic Theory and Dynamical Systems, 30 (2010), 21-31. doi: 10.1017/S0143385708001089.  Google Scholar

[6]

Springer-Verlag, Berlin, 1992.  Google Scholar

[7]

Transactions of the American Mathematical Society, 348 (1996), 1357-1372. doi: 10.1090/S0002-9947-96-01600-5.  Google Scholar

[8]

Journal of Differential Equations, 18 (1975), 333-339.  Google Scholar

[9]

Ergodic Theory and Dynamical Systems, 13 (1993), 7-19. doi: 10.1017/S0143385700007173.  Google Scholar

[10]

Proceedings of the American Mathematical Society, 113 (1991), 251-263. doi: 10.2307/2048466.  Google Scholar

[11]

Birkhäuser, Boston MA, 1980.  Google Scholar

[12]

Transactions of the American Mathematical Society, 308 (1988), 227-241. doi: 10.2307/2000960.  Google Scholar

[13]

Springer-Verlag, Berlin, 1993.  Google Scholar

[14]

Fundamenta Mathematicae, 192 (2006), 267-289. doi: 10.4064/fm192-3-6.  Google Scholar

[15]

Fundamenta Mathematicae, 205 (2009), 179-189. doi: 10.4064/fm205-2-6.  Google Scholar

[16]

Journal of Dynamics and Differential Equations, 13 (2001), 107-131. doi: 10.1023/A:1009044515567.  Google Scholar

[17]

Fundamenta Informaticae, 84 (2008), 375-390.  Google Scholar

[18]

Fundamenta Mathematicae, 212 (2011), 35-52. doi: 10.4064/fm212-1-3.  Google Scholar

[19]

Société Mathématique de France, Paris, 2003.  Google Scholar

[20]

Discrete and Continuous Dynamical Systems. Series A, 13 (2005), 533-540. doi: 10.3934/dcds.2005.13.533.  Google Scholar

[21]

Communications in Mathematical Physics, 99 (1985), 177-195.  Google Scholar

[22]

Topology and Its Applications, 23 (1986), 87-90. doi: 10.1016/0166-8641(86)90019-2.  Google Scholar

[23]

Australian Mathematical Society Journal, Series A, 61 (1996), 57-72.  Google Scholar

[24]

Transactions of the American Mathematical Society, 122 (1966), 368-378.  Google Scholar

[25]

Springer-Verlag, Berlin, 1999.  Google Scholar

[26]

Cambridge University Press, Cambridge, 2010.  Google Scholar

[27]

International Journal of Mathematics and Mathematical Sciences, 53-56 (2004), 2907-2910. doi: 10.1155/S0161171204312184.  Google Scholar

[28]

Topology and Its Applications, 131 (2003), 15-31. doi: 10.1016/S0166-8641(02)00260-2.  Google Scholar

[29]

Ukrainskiĭ Matematicheskiĭ Zhurnal, 18 (1966), 127-130.  Google Scholar

[30]

Doklady Akademii Nauk SSSR, 160 (1965), 1036-1038.  Google Scholar

[31]

in "The Structure of Attractors in Dynamical Systems," Springer, Berlin, (1978).  Google Scholar

[32]

Northeastern Mathematical Journal, 17 (2001), 120-126.  Google Scholar

[1]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[5]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[6]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[7]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[8]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[9]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[12]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[13]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[14]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[15]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[16]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[17]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[18]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[19]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[20]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (14)

[Back to Top]