\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance

Abstract Related Papers Cited by
  • In this paper we deal with the existence of unbounded orbits of the map $$ \left\{\begin{array}{l} θ_1= θ+\frac{1}{ρ} [u(θ)-l_1(ρ)]+h_1(ρ, θ), ρ_1=ρ-u'(θ)+l_2(ρ)+h_2(ρ, θ), \end{array} \right. $$ where $\mu$ is continuous and $2\pi$-periodic, $l_1$, $l_2$ are continuous and bounded, $h_1(\rho, \theta)=o(\rho^{-1})$, $h_2(\rho, \theta)=o(1)$, for $\rho\to+\infty$. We prove that every orbit of the map tends to infinity in the future or in the past for $\rho$ large enough provided that $$[\liminf_{\rho\to+\infty}l_1(\rho), \limsup_{\rho\to+\infty}l_1(\rho)]\cap Range(\mu)=\emptyset$$ and other conditions hold. On the basis of this conclusion, we prove that the system $ Jz'=\nabla H(z)+f(z)+p(t)$ has unbounded solutions when $H$ is positively homogeneous of degree 2 and positive. Meanwhile, we also obtain the existence of $2\pi$-periodic solutions of this system.
    Mathematics Subject Classification: Primary: 34C25; Secondary: 34B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differential Equations, 143 (1998), 201-220.doi: 10.1006/jdeq.1997.3367.

    [2]

    D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance, Differential Integral Equations, 15 (2002), 1139-1152.

    [3]

    D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance, Discrete Contin. Dynam. Systems, 8 (2002), 907-930.doi: 10.3934/dcds.2002.8.907.

    [4]

    A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance, Proc. Edinburgh Math. Soc. A, 138 (2008), 15-32.doi: 10.1017/S030821050600062X.

    [5]

    A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, J. London Math. Soc., 68 (2003), 119-132.doi: 10.1112/S0024610703004459.

    [6]

    N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321-328.

    [7]

    C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators, J. Differential Equations, 147 (1998), 58-78.doi: 10.1006/jdeq.1998.3441.

    [8]

    C. Fabry and A. Fonda, Unbounded motions of perturbed isochronous hamiltonian systems at resonance, Adv. Nonlinear Stud., 5 (2005), 351-373.

    [9]

    C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance, Nonlinearity, 13 (2000), 493-505.doi: 10.1088/0951-7715/13/3/302.

    [10]

    A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differential Equations, 200 (2004), 162-184.doi: 10.1016/j.jde.2004.02.001.

    [11]

    A. Fonda and J. Mawhin, Planar differential systems at resonance, Adv. Differential Equations, 11 (2006), 1111-1133.

    [12]

    N. G. Lloyd, "Degree Theory," Cambridge University Press, 1978.

    [13]

    A. I. Luré, Some nonlinear problems of the theory of automatic regulation (Russian), Gostekhizdat, (1951), pp.26.

    [14]

    D. B. Qian, On resonance phenomena for asymmetric weakly nonlinear oscillator, Sci. China Ser. A, 45 (2002), 214-222.

    [15]

    Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives, Discrete Contin. Dynam. Systems, 9 (2003), 751-770.doi: 10.3934/dcds.2003.9.751.

    [16]

    Z. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, Sci. China Ser. A, 8 (2007), 1205-1216.doi: 10.1007/s11425-007-0070-z.

    [17]

    X. Yang, Unboundedness of the large solutions of someasymmetric oscillators at resonance, Math. Nachr., 276 (2004), 89-102.doi: 10.1002/mana.200310215.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return