May  2013, 33(5): 1835-1856. doi: 10.3934/dcds.2013.33.1835

Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance

1. 

Department of Mathematics - University of Torino, Via Carlo Alberto, 10 - 10123 Torino, Italy, Italy

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048

Received  January 2012 Revised  July 2012 Published  December 2012

In this paper we deal with the existence of unbounded orbits of the map $$ \left\{\begin{array}{l} θ_1= θ+\frac{1}{ρ} [u(θ)-l_1(ρ)]+h_1(ρ, θ), ρ_1=ρ-u'(θ)+l_2(ρ)+h_2(ρ, θ), \end{array} \right. $$ where $\mu$ is continuous and $2\pi$-periodic, $l_1$, $l_2$ are continuous and bounded, $h_1(\rho, \theta)=o(\rho^{-1})$, $h_2(\rho, \theta)=o(1)$, for $\rho\to+\infty$. We prove that every orbit of the map tends to infinity in the future or in the past for $\rho$ large enough provided that $$[\liminf_{\rho\to+\infty}l_1(\rho), \limsup_{\rho\to+\infty}l_1(\rho)]\cap Range(\mu)=\emptyset$$ and other conditions hold. On the basis of this conclusion, we prove that the system $ Jz'=\nabla H(z)+f(z)+p(t)$ has unbounded solutions when $H$ is positively homogeneous of degree 2 and positive. Meanwhile, we also obtain the existence of $2\pi$-periodic solutions of this system.
Citation: Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835
References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral Equations, 15 (2002), 1139.   Google Scholar

[3]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[4]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc. A, 138 (2008), 15.  doi: 10.1017/S030821050600062X.  Google Scholar

[5]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[6]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.   Google Scholar

[7]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[8]

C. Fabry and A. Fonda, Unbounded motions of perturbed isochronous hamiltonian systems at resonance,, Adv. Nonlinear Stud., 5 (2005), 351.   Google Scholar

[9]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[10]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane,, J. Differential Equations, 200 (2004), 162.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[11]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Differential Equations, 11 (2006), 1111.   Google Scholar

[12]

N. G. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[13]

A. I. Luré, Some nonlinear problems of the theory of automatic regulation (Russian),, Gostekhizdat, (1951).   Google Scholar

[14]

D. B. Qian, On resonance phenomena for asymmetric weakly nonlinear oscillator,, Sci. China Ser. A, 45 (2002), 214.   Google Scholar

[15]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[16]

Z. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 8 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[17]

X. Yang, Unboundedness of the large solutions of someasymmetric oscillators at resonance,, Math. Nachr., 276 (2004), 89.  doi: 10.1002/mana.200310215.  Google Scholar

show all references

References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral Equations, 15 (2002), 1139.   Google Scholar

[3]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[4]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc. A, 138 (2008), 15.  doi: 10.1017/S030821050600062X.  Google Scholar

[5]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[6]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.   Google Scholar

[7]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[8]

C. Fabry and A. Fonda, Unbounded motions of perturbed isochronous hamiltonian systems at resonance,, Adv. Nonlinear Stud., 5 (2005), 351.   Google Scholar

[9]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[10]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane,, J. Differential Equations, 200 (2004), 162.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[11]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Differential Equations, 11 (2006), 1111.   Google Scholar

[12]

N. G. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[13]

A. I. Luré, Some nonlinear problems of the theory of automatic regulation (Russian),, Gostekhizdat, (1951).   Google Scholar

[14]

D. B. Qian, On resonance phenomena for asymmetric weakly nonlinear oscillator,, Sci. China Ser. A, 45 (2002), 214.   Google Scholar

[15]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[16]

Z. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 8 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[17]

X. Yang, Unboundedness of the large solutions of someasymmetric oscillators at resonance,, Math. Nachr., 276 (2004), 89.  doi: 10.1002/mana.200310215.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (2)

[Back to Top]