
Previous Article
No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{iz}$
 DCDS Home
 This Issue

Next Article
Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
Almost periodic and almost automorphic solutions of linear differential equations
1.  Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla 
2.  State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău 
(i) There exists a complete trajectory of the corresponding homogeneous equation with constant positive norm;
(ii) The trivial solution of the homogeneous equation is uniformly asymptotically stable.
If the second alternative holds, then the nonhomogeneous equation with almost periodic (respectively, almost automorphic, recurrent) coefficients possesses a unique almost periodic (respectively, almost automorphic, recurrent) solution. We investigate this problem within the framework of general linear nonautonomous dynamical systems. We apply our general results also to the cases of functionaldifferential equations and difference equations.
References:
[1] 
B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 1115. 
[2] 
B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence, Bull. Sci. Math. (2), 101 (1977), 131148. 
[3] 
S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 20392043. 
[4] 
N. Bourbaki, "Espaces Vectoriels Topologiques," Hermann, Paris, 1955. 
[5] 
I. U. Bronsteyn, "Extensions of Minimal Transformation Group," Noordhoff, 1979. 
[6] 
I. U. Bronsteyn, "Nonautonomous Dynamical Systems," Kishinev, "Shtiintsa", 1984 (in Russian). 
[7] 
T. Caraballo and D. N. Cheban, On the structure of the global attractor for nonautonomous difference equations with weak convergence, Comm. Pure Applied Analysis, 11 (2012), 809828. doi: 10.3934/cpaa.2012.11.809. 
[8] 
D. N. Cheban, Global attractors of infinitedimensional dynamical systems, I, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2 (1994), 221. 
[9] 
D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces, Electronic Journal of Differential Equations, 2000 (2000), 118. 
[10] 
D. N. Cheban, "Global Attractors of NonAutonomous Dissipative Dynamical Systems," Interdisciplinary Mathematical Sciences 1. River Edge, NJ: World Scientific, 2004, 528 pp. doi: 10.1142/9789812563088. 
[11] 
D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$monotone differential equations, Journal of Dynamics and Differential Equations, 20 (2008), 669697. doi: 10.1007/s108840089101x. 
[12] 
P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations, Portugaliae Mathematica, 59 (2002), Fasc. 2, Nova Série, 141158. 
[13] 
J. Egawa, A characterization of almost automorphic functions, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203206. 
[14] 
H. Falun, Existence of almost periodic solutions for dissipative, Ann. of Diff. Eqs., 6 (1990), 271279. 
[15] 
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems," Amer. Math. Soc., Providence, RI, 1988. 
[16] 
B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge Univ. Press, London, 1982. 
[17] 
P. Milnes, Almost automorphic functions and totally bounded groups, Rocky Mountain J. Math., 7 (1977), 231250. 
[18] 
K. Petersen, "Ergodic Theory," Cambridge University Press. Cambridge  New York  Port Chester  Melbourn  Sydney, 1989, 342 pp. 
[19] 
R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I, Journal of Differential Equations, 15 (1974), 429458. 
[20] 
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces, Journal of Differential Equations, 113 (1994), 1767 doi: 10.1006/jdeq.1994.1113. 
[21] 
G. R. Sell, "Topological Dynamics and Differential Equations," Van NostrandReinbold, London, 1971. 
[22] 
L. Schwartz, "Analyse Mathématique," volume I. Hermann, 1967. 
[23] 
B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations," Ştiinţa, Chişinău, 1972. (In Russian) 
[24] 
B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differential Equations, 11 (1975), 12461255. 
[25] 
B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems, An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.), 21 (1975), 5759. (in Russian). 
[26] 
B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations," Ştiinţa, Chişinău, 1985. (In Russian) 
[27] 
W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skewproduct semiflows, Mem. Amer. Math. Soc., 136 (1998), x+93 pp. 
[28] 
K. S. Sibirsky, "Introduction to Topological Dynamics," Noordhoff, Leyden, 1975. 
[29] 
Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity," Nauka i Tehnika. Minsk, 1986 (in Russian). 
[30] 
P. Walters, "Ergodic Theory  Introductory Lectures," Lecture Notes in Mathematics, 458, SpringerVerlag, Berlin, 1975, 198 pp. 
show all references
References:
[1] 
B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 1115. 
[2] 
B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence, Bull. Sci. Math. (2), 101 (1977), 131148. 
[3] 
S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 20392043. 
[4] 
N. Bourbaki, "Espaces Vectoriels Topologiques," Hermann, Paris, 1955. 
[5] 
I. U. Bronsteyn, "Extensions of Minimal Transformation Group," Noordhoff, 1979. 
[6] 
I. U. Bronsteyn, "Nonautonomous Dynamical Systems," Kishinev, "Shtiintsa", 1984 (in Russian). 
[7] 
T. Caraballo and D. N. Cheban, On the structure of the global attractor for nonautonomous difference equations with weak convergence, Comm. Pure Applied Analysis, 11 (2012), 809828. doi: 10.3934/cpaa.2012.11.809. 
[8] 
D. N. Cheban, Global attractors of infinitedimensional dynamical systems, I, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2 (1994), 221. 
[9] 
D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces, Electronic Journal of Differential Equations, 2000 (2000), 118. 
[10] 
D. N. Cheban, "Global Attractors of NonAutonomous Dissipative Dynamical Systems," Interdisciplinary Mathematical Sciences 1. River Edge, NJ: World Scientific, 2004, 528 pp. doi: 10.1142/9789812563088. 
[11] 
D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$monotone differential equations, Journal of Dynamics and Differential Equations, 20 (2008), 669697. doi: 10.1007/s108840089101x. 
[12] 
P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations, Portugaliae Mathematica, 59 (2002), Fasc. 2, Nova Série, 141158. 
[13] 
J. Egawa, A characterization of almost automorphic functions, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203206. 
[14] 
H. Falun, Existence of almost periodic solutions for dissipative, Ann. of Diff. Eqs., 6 (1990), 271279. 
[15] 
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems," Amer. Math. Soc., Providence, RI, 1988. 
[16] 
B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge Univ. Press, London, 1982. 
[17] 
P. Milnes, Almost automorphic functions and totally bounded groups, Rocky Mountain J. Math., 7 (1977), 231250. 
[18] 
K. Petersen, "Ergodic Theory," Cambridge University Press. Cambridge  New York  Port Chester  Melbourn  Sydney, 1989, 342 pp. 
[19] 
R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I, Journal of Differential Equations, 15 (1974), 429458. 
[20] 
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces, Journal of Differential Equations, 113 (1994), 1767 doi: 10.1006/jdeq.1994.1113. 
[21] 
G. R. Sell, "Topological Dynamics and Differential Equations," Van NostrandReinbold, London, 1971. 
[22] 
L. Schwartz, "Analyse Mathématique," volume I. Hermann, 1967. 
[23] 
B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations," Ştiinţa, Chişinău, 1972. (In Russian) 
[24] 
B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differential Equations, 11 (1975), 12461255. 
[25] 
B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems, An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.), 21 (1975), 5759. (in Russian). 
[26] 
B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations," Ştiinţa, Chişinău, 1985. (In Russian) 
[27] 
W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skewproduct semiflows, Mem. Amer. Math. Soc., 136 (1998), x+93 pp. 
[28] 
K. S. Sibirsky, "Introduction to Topological Dynamics," Noordhoff, Leyden, 1975. 
[29] 
Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity," Nauka i Tehnika. Minsk, 1986 (in Russian). 
[30] 
P. Walters, "Ergodic Theory  Introductory Lectures," Lecture Notes in Mathematics, 458, SpringerVerlag, Berlin, 1975, 198 pp. 
[1] 
Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 37453769. doi: 10.3934/dcds.2015.35.3745 
[2] 
Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587614. doi: 10.3934/dcds.2006.16.587 
[3] 
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems  B, 2005, 5 (2) : 215238. doi: 10.3934/dcdsb.2005.5.215 
[4] 
Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete and Continuous Dynamical Systems  B, 2020, 25 (1) : 473487. doi: 10.3934/dcdsb.2019190 
[5] 
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465482. doi: 10.3934/dcds.2013.33.465 
[6] 
Felipe GarcíaRamos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 729746. doi: 10.3934/dcds.2019030 
[7] 
Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 571593. doi: 10.3934/dcds.2008.21.571 
[8] 
Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 727744. doi: 10.3934/dcds.2003.9.727 
[9] 
David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96101. doi: 10.3934/proc.2001.2001.96 
[10] 
Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems  S, 2020, 13 (4) : 11031114. doi: 10.3934/dcdss.2020065 
[11] 
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete and Continuous Dynamical Systems  B, 2021, 26 (12) : 64256462. doi: 10.3934/dcdsb.2021026 
[12] 
Everaldo de Mello Bonotto, Matheus Cheque Bortolan, Rodolfo Collegari, José Manuel Uzal. Impulses in driving semigroups of nonautonomous dynamical systems: Application to cascade systems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (9) : 46454661. doi: 10.3934/dcdsb.2020306 
[13] 
P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213232. doi: 10.3934/dcds.2005.12.213 
[14] 
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541547. doi: 10.3934/cpaa.2007.6.541 
[15] 
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 34353443. doi: 10.3934/dcds.2016.36.3435 
[16] 
Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almostinvariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135162. doi: 10.3934/jcd.2014.1.135 
[17] 
D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure and Applied Analysis, 2011, 10 (5) : 14011414. doi: 10.3934/cpaa.2011.10.1401 
[18] 
Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 23012313. doi: 10.3934/dcds.2012.32.2301 
[19] 
Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 569584. doi: 10.3934/dcds.1999.5.569 
[20] 
Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 114. doi: 10.3934/eect.2014.3.1 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]