• Previous Article
    No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
  • DCDS Home
  • This Issue
  • Next Article
    Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
May  2013, 33(5): 1857-1882. doi: 10.3934/dcds.2013.33.1857

Almost periodic and almost automorphic solutions of linear differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău

Received  December 2011 Revised  May 2012 Published  December 2012

We analyze the existence of almost periodic (respectively, almost automorphic, recurrent) solutions of a linear non-homogeneous differential (or difference) equation in a Banach space, with almost periodic (respectively, almost automorphic, recurrent) coefficients. Under some conditions we prove that one of the following alternatives is fulfilled:
  (i) There exists a complete trajectory of the corresponding homogeneous equation with constant positive norm;
  (ii) The trivial solution of the homogeneous equation is uniformly asymptotically stable.
If the second alternative holds, then the non-homogeneous equation with almost periodic (respectively, almost automorphic, recurrent) coefficients possesses a unique almost periodic (respectively, almost automorphic, recurrent) solution. We investigate this problem within the framework of general linear nonautonomous dynamical systems. We apply our general results also to the cases of functional-differential equations and difference equations.
Citation: Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857
References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.   Google Scholar

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.   Google Scholar

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.   Google Scholar

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).   Google Scholar

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.  doi: 10.3934/cpaa.2012.11.809.  Google Scholar

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.   Google Scholar

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.   Google Scholar

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.  doi: 10.1007/s10884-008-9101-x.  Google Scholar

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.   Google Scholar

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.   Google Scholar

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.   Google Scholar

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).   Google Scholar

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.   Google Scholar

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.  doi: 10.1006/jdeq.1994.1113.  Google Scholar

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).   Google Scholar

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).   Google Scholar

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).   Google Scholar

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.   Google Scholar

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).   Google Scholar

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).   Google Scholar

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).   Google Scholar

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).   Google Scholar

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

show all references

References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.   Google Scholar

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.   Google Scholar

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.   Google Scholar

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).   Google Scholar

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.  doi: 10.3934/cpaa.2012.11.809.  Google Scholar

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.   Google Scholar

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.   Google Scholar

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.  doi: 10.1007/s10884-008-9101-x.  Google Scholar

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.   Google Scholar

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.   Google Scholar

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.   Google Scholar

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).   Google Scholar

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.   Google Scholar

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.  doi: 10.1006/jdeq.1994.1113.  Google Scholar

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).   Google Scholar

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).   Google Scholar

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).   Google Scholar

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.   Google Scholar

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).   Google Scholar

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).   Google Scholar

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).   Google Scholar

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).   Google Scholar

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

[1]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[2]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[3]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[4]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[5]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[6]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[7]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[8]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[9]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[10]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[11]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[12]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[14]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[15]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[16]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[17]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[18]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[20]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]