-
Previous Article
No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
- DCDS Home
- This Issue
-
Next Article
Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
Almost periodic and almost automorphic solutions of linear differential equations
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla |
2. | State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău |
(i) There exists a complete trajectory of the corresponding homogeneous equation with constant positive norm;
(ii) The trivial solution of the homogeneous equation is uniformly asymptotically stable.
If the second alternative holds, then the non-homogeneous equation with almost periodic (respectively, almost automorphic, recurrent) coefficients possesses a unique almost periodic (respectively, almost automorphic, recurrent) solution. We investigate this problem within the framework of general linear nonautonomous dynamical systems. We apply our general results also to the cases of functional-differential equations and difference equations.
References:
[1] |
B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.
|
[2] |
B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.
|
[3] |
S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.
|
[4] |
N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).
|
[5] |
I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).
|
[6] |
I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).
|
[7] |
T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.
doi: 10.3934/cpaa.2012.11.809. |
[8] |
D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.
|
[9] |
D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.
|
[10] |
D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).
doi: 10.1142/9789812563088. |
[11] |
D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.
doi: 10.1007/s10884-008-9101-x. |
[12] |
P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.
|
[13] |
J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.
|
[14] |
H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.
|
[15] |
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).
|
[16] |
B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).
|
[17] |
P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.
|
[18] |
K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).
|
[19] |
R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.
|
[20] |
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.
doi: 10.1006/jdeq.1994.1113. |
[21] |
G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).
|
[22] |
L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967). Google Scholar |
[23] |
B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).
|
[24] |
B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.
|
[25] |
B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.
|
[26] |
B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).
|
[27] |
W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).
|
[28] |
K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).
|
[29] |
Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).
|
[30] |
P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).
|
show all references
References:
[1] |
B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.
|
[2] |
B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.
|
[3] |
S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.
|
[4] |
N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).
|
[5] |
I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).
|
[6] |
I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).
|
[7] |
T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.
doi: 10.3934/cpaa.2012.11.809. |
[8] |
D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.
|
[9] |
D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.
|
[10] |
D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).
doi: 10.1142/9789812563088. |
[11] |
D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.
doi: 10.1007/s10884-008-9101-x. |
[12] |
P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.
|
[13] |
J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.
|
[14] |
H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.
|
[15] |
J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).
|
[16] |
B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).
|
[17] |
P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.
|
[18] |
K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).
|
[19] |
R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.
|
[20] |
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.
doi: 10.1006/jdeq.1994.1113. |
[21] |
G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).
|
[22] |
L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967). Google Scholar |
[23] |
B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).
|
[24] |
B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.
|
[25] |
B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.
|
[26] |
B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).
|
[27] |
W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).
|
[28] |
K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).
|
[29] |
Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).
|
[30] |
P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).
|
[1] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[2] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[3] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[4] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[5] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[6] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[7] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[8] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[9] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[10] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[11] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[12] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[13] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[14] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[15] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[16] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[17] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[18] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[19] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[20] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]