-
Previous Article
Continuous limit and the moments system for the globally coupled phase oscillators
- DCDS Home
- This Issue
-
Next Article
Almost periodic and almost automorphic solutions of linear differential equations
No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
1. | Department of Mathematics, Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, United States |
2. | Department of Mathematics, Queens College, Flushing, NY 11367, United States |
3. | Department of Mathematics, Nanjing University, Nanjing 210090, China |
References:
[1] |
M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure,, Math. Ann., 352 (2012), 27.
|
[2] |
L. Carleson and T. Gamelin, "Complex Dynamics,", Springer-Verlag, (1991).
|
[3] |
B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda\sin z$,, Fund. Math., 159 (1999), 269.
|
[4] |
A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions,, Ann. Inst. Fourier (Grenoble), 42 (1992), 989.
|
[5] |
C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329.
|
[6] |
C. McMullen, "Complex Dynamics and Renormalization,", Ann. of Math. Studies, 135 (1994).
|
[7] |
C. McMullen, Self-similarity of Siegel disk and Hausdorff dimension of Julia set,, Acta Mathematica, 180 (1998), 247.
|
[8] |
W. De Melo, P. Salomão, and E. Vargas, A full family of multimodel family of mappings on the circle,, Ergodic Theory and Dynamical Systems, 31 (2011), 1325.
doi: 10.1017/S0143385710000386. |
[9] |
L. Rempe, Rigidity of escaping dynamics for transdental entire functions,, Acta Mathematica, 203 (2009), 235.
|
[10] |
L. Rempe and S. van Strien, Absence of line fields and Mane's theorem for non-recurrent transcendental functions,, Trans Amer. Math. Soc., 363 (2011), 203.
doi: 10.1090/S0002-9947-2010-05125-6. |
[11] |
D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox,, Duke Math. J., 136 (2007), 343.
doi: 10.1215/S0012-7094-07-13625-1. |
[12] |
H. Schubert, Area of Fatou sets of trigonometric functions,, Proc. Amer. Math. Soc., 136 (2008), 1251.
|
[13] |
G. Zhang, On the non-escaping set of $e^{2\pi i\theta}sin(z)$,, Israel J. Math., 165 (2008), 233.
|
[14] |
G. Zhang, On the dynamics of $e^{2\pi i\theta}sin(z)$,, Illinois J. Math., 49 (2005), 1171.
|
show all references
References:
[1] |
M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure,, Math. Ann., 352 (2012), 27.
|
[2] |
L. Carleson and T. Gamelin, "Complex Dynamics,", Springer-Verlag, (1991).
|
[3] |
B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda\sin z$,, Fund. Math., 159 (1999), 269.
|
[4] |
A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions,, Ann. Inst. Fourier (Grenoble), 42 (1992), 989.
|
[5] |
C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329.
|
[6] |
C. McMullen, "Complex Dynamics and Renormalization,", Ann. of Math. Studies, 135 (1994).
|
[7] |
C. McMullen, Self-similarity of Siegel disk and Hausdorff dimension of Julia set,, Acta Mathematica, 180 (1998), 247.
|
[8] |
W. De Melo, P. Salomão, and E. Vargas, A full family of multimodel family of mappings on the circle,, Ergodic Theory and Dynamical Systems, 31 (2011), 1325.
doi: 10.1017/S0143385710000386. |
[9] |
L. Rempe, Rigidity of escaping dynamics for transdental entire functions,, Acta Mathematica, 203 (2009), 235.
|
[10] |
L. Rempe and S. van Strien, Absence of line fields and Mane's theorem for non-recurrent transcendental functions,, Trans Amer. Math. Soc., 363 (2011), 203.
doi: 10.1090/S0002-9947-2010-05125-6. |
[11] |
D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox,, Duke Math. J., 136 (2007), 343.
doi: 10.1215/S0012-7094-07-13625-1. |
[12] |
H. Schubert, Area of Fatou sets of trigonometric functions,, Proc. Amer. Math. Soc., 136 (2008), 1251.
|
[13] |
G. Zhang, On the non-escaping set of $e^{2\pi i\theta}sin(z)$,, Israel J. Math., 165 (2008), 233.
|
[14] |
G. Zhang, On the dynamics of $e^{2\pi i\theta}sin(z)$,, Illinois J. Math., 49 (2005), 1171.
|
[1] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[2] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[3] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[4] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[5] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[6] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[7] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[8] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]