-
Previous Article
Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
- DCDS Home
- This Issue
-
Next Article
No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
Continuous limit and the moments system for the globally coupled phase oscillators
1. | Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan |
References:
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137. Google Scholar |
[2] |
N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Hafner Publishing Co., (1965).
|
[3] |
N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Phys. D, 143 (2000), 21.
doi: 10.1016/S0167-2789(00)00095-6. |
[4] |
H. Chiba and I. Nishikawa, Center manifold reduction for a large population of globally coupled phase oscillators,, Chaos, 21 (2011).
doi: 10.1063/1.3647317. |
[5] |
H. Chiba and D. Pazó, Stability of an $[N/2]$-dimensional invariant torus in the Kuramoto model at small coupling,, Physica D, 238 (2009), 1068.
doi: 10.1016/j.physd.2009.03.005. |
[6] |
J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Phys. D, 125 (1999), 1.
doi: 10.1016/S0167-2789(98)00235-8. |
[7] |
H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators,, J. Statist. Phys., 60 (1990), 753.
doi: 10.1007/BF01025993. |
[8] |
H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Phys. D, 91 (1996), 24.
doi: 10.1016/0167-2789(95)00260-X. |
[9] |
M. Frontini and A. Tagliani, Entropy-convergence in Stieltjes and Hamburger moment problem,, Appl. Math. Comput., 88 (1997), 39.
doi: 10.1016/S0096-3003(96)00305-0. |
[10] |
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators,, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420.
|
[11] |
Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Springer Series in Synergetics, 19 (1984).
doi: 10.1007/978-3-642-69689-3. |
[12] |
Y. Maistrenko, O. Popovych, O. Burylko and P. A. Tass, Mechanism of desynchronization in the finite-dimensional Kuramoto model,, Phys. Rev. Lett., 93 (2004). Google Scholar |
[13] |
Y. L. Maistrenko, O. V. Popovych and P. A. Tass, Chaotic attractor in the Kuramoto model,, Int. J. of Bif. and Chaos, 15 (2005), 3457.
doi: 10.1142/S0218127405014155. |
[14] |
E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott , P. So and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution,, Phys. Rev. E, 79 (2009).
doi: 10.1103/PhysRevE.79.026204. |
[15] |
R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model,, J. Nonlinear Sci., 17 (2007), 309.
doi: 10.1007/s00332-006-0806-x. |
[16] |
C. J. Perez and F. Ritort, A moment-based approach to the dynamical solution of the Kuramoto model,, J. Phys. A, 30 (1997), 8095.
doi: 10.1088/0305-4470/30/23/010. |
[17] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511755743. |
[18] |
J. A. Shohat and J. D. Tamarkin, "The Problem of Moments,", American Mathematical Society, (1943).
|
[19] |
B. Simon, The classical moment problem as a self-adjoint finite difference operator,, Adv. Math., 137 (1998), 82.
doi: 10.1006/aima.1998.1728. |
[20] |
S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,, Phys. D, 143 (2000), 1.
doi: 10.1016/S0167-2789(00)00094-4. |
[21] |
S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,, Phys. Rev. Lett., 68 (1992), 2730.
doi: 10.1103/PhysRevLett.68.2730. |
[22] |
S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators,, J. Statist. Phys., 63 (1991), 613.
doi: 10.1007/BF01029202. |
show all references
References:
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137. Google Scholar |
[2] |
N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Hafner Publishing Co., (1965).
|
[3] |
N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Phys. D, 143 (2000), 21.
doi: 10.1016/S0167-2789(00)00095-6. |
[4] |
H. Chiba and I. Nishikawa, Center manifold reduction for a large population of globally coupled phase oscillators,, Chaos, 21 (2011).
doi: 10.1063/1.3647317. |
[5] |
H. Chiba and D. Pazó, Stability of an $[N/2]$-dimensional invariant torus in the Kuramoto model at small coupling,, Physica D, 238 (2009), 1068.
doi: 10.1016/j.physd.2009.03.005. |
[6] |
J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Phys. D, 125 (1999), 1.
doi: 10.1016/S0167-2789(98)00235-8. |
[7] |
H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators,, J. Statist. Phys., 60 (1990), 753.
doi: 10.1007/BF01025993. |
[8] |
H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Phys. D, 91 (1996), 24.
doi: 10.1016/0167-2789(95)00260-X. |
[9] |
M. Frontini and A. Tagliani, Entropy-convergence in Stieltjes and Hamburger moment problem,, Appl. Math. Comput., 88 (1997), 39.
doi: 10.1016/S0096-3003(96)00305-0. |
[10] |
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators,, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420.
|
[11] |
Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Springer Series in Synergetics, 19 (1984).
doi: 10.1007/978-3-642-69689-3. |
[12] |
Y. Maistrenko, O. Popovych, O. Burylko and P. A. Tass, Mechanism of desynchronization in the finite-dimensional Kuramoto model,, Phys. Rev. Lett., 93 (2004). Google Scholar |
[13] |
Y. L. Maistrenko, O. V. Popovych and P. A. Tass, Chaotic attractor in the Kuramoto model,, Int. J. of Bif. and Chaos, 15 (2005), 3457.
doi: 10.1142/S0218127405014155. |
[14] |
E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott , P. So and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution,, Phys. Rev. E, 79 (2009).
doi: 10.1103/PhysRevE.79.026204. |
[15] |
R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model,, J. Nonlinear Sci., 17 (2007), 309.
doi: 10.1007/s00332-006-0806-x. |
[16] |
C. J. Perez and F. Ritort, A moment-based approach to the dynamical solution of the Kuramoto model,, J. Phys. A, 30 (1997), 8095.
doi: 10.1088/0305-4470/30/23/010. |
[17] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511755743. |
[18] |
J. A. Shohat and J. D. Tamarkin, "The Problem of Moments,", American Mathematical Society, (1943).
|
[19] |
B. Simon, The classical moment problem as a self-adjoint finite difference operator,, Adv. Math., 137 (1998), 82.
doi: 10.1006/aima.1998.1728. |
[20] |
S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,, Phys. D, 143 (2000), 1.
doi: 10.1016/S0167-2789(00)00094-4. |
[21] |
S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,, Phys. Rev. Lett., 68 (1992), 2730.
doi: 10.1103/PhysRevLett.68.2730. |
[22] |
S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators,, J. Statist. Phys., 63 (1991), 613.
doi: 10.1007/BF01029202. |
[1] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[2] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[5] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[6] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[7] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[8] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[9] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[10] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[11] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[12] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[13] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[14] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[15] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[16] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[17] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[18] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[19] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[20] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]