• Previous Article
    Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
  • DCDS Home
  • This Issue
  • Next Article
    No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
May  2013, 33(5): 1891-1903. doi: 10.3934/dcds.2013.33.1891

Continuous limit and the moments system for the globally coupled phase oscillators

1. 

Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan

Received  December 2011 Revised  July 2012 Published  December 2012

The Kuramoto model, which describes synchronization phenomena, is a system of ordinary differential equations on $N$-torus defined as coupled harmonic oscillators. The order parameter is often used to measure the degree of synchronization. In this paper, the moments systems are introduced for both of the Kuramoto model and its continuous model. It is shown that the moments systems for both systems take the same form. This fact allows one to prove that the order parameter of the $N$-dimensional Kuramoto model converges to that of the continuous model as $N\to \infty$.
Citation: Hayato Chiba. Continuous limit and the moments system for the globally coupled phase oscillators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1891-1903. doi: 10.3934/dcds.2013.33.1891
References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137.   Google Scholar

[2]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Hafner Publishing Co., (1965).   Google Scholar

[3]

N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Phys. D, 143 (2000), 21.  doi: 10.1016/S0167-2789(00)00095-6.  Google Scholar

[4]

H. Chiba and I. Nishikawa, Center manifold reduction for a large population of globally coupled phase oscillators,, Chaos, 21 (2011).  doi: 10.1063/1.3647317.  Google Scholar

[5]

H. Chiba and D. Pazó, Stability of an $[N/2]$-dimensional invariant torus in the Kuramoto model at small coupling,, Physica D, 238 (2009), 1068.  doi: 10.1016/j.physd.2009.03.005.  Google Scholar

[6]

J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Phys. D, 125 (1999), 1.  doi: 10.1016/S0167-2789(98)00235-8.  Google Scholar

[7]

H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators,, J. Statist. Phys., 60 (1990), 753.  doi: 10.1007/BF01025993.  Google Scholar

[8]

H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Phys. D, 91 (1996), 24.  doi: 10.1016/0167-2789(95)00260-X.  Google Scholar

[9]

M. Frontini and A. Tagliani, Entropy-convergence in Stieltjes and Hamburger moment problem,, Appl. Math. Comput., 88 (1997), 39.  doi: 10.1016/S0096-3003(96)00305-0.  Google Scholar

[10]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators,, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420.   Google Scholar

[11]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Springer Series in Synergetics, 19 (1984).  doi: 10.1007/978-3-642-69689-3.  Google Scholar

[12]

Y. Maistrenko, O. Popovych, O. Burylko and P. A. Tass, Mechanism of desynchronization in the finite-dimensional Kuramoto model,, Phys. Rev. Lett., 93 (2004).   Google Scholar

[13]

Y. L. Maistrenko, O. V. Popovych and P. A. Tass, Chaotic attractor in the Kuramoto model,, Int. J. of Bif. and Chaos, 15 (2005), 3457.  doi: 10.1142/S0218127405014155.  Google Scholar

[14]

E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott , P. So and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026204.  Google Scholar

[15]

R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model,, J. Nonlinear Sci., 17 (2007), 309.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[16]

C. J. Perez and F. Ritort, A moment-based approach to the dynamical solution of the Kuramoto model,, J. Phys. A, 30 (1997), 8095.  doi: 10.1088/0305-4470/30/23/010.  Google Scholar

[17]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511755743.  Google Scholar

[18]

J. A. Shohat and J. D. Tamarkin, "The Problem of Moments,", American Mathematical Society, (1943).   Google Scholar

[19]

B. Simon, The classical moment problem as a self-adjoint finite difference operator,, Adv. Math., 137 (1998), 82.  doi: 10.1006/aima.1998.1728.  Google Scholar

[20]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,, Phys. D, 143 (2000), 1.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[21]

S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,, Phys. Rev. Lett., 68 (1992), 2730.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar

[22]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators,, J. Statist. Phys., 63 (1991), 613.  doi: 10.1007/BF01029202.  Google Scholar

show all references

References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena,, Rev. Mod. Phys., 77 (2005), 137.   Google Scholar

[2]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Hafner Publishing Co., (1965).   Google Scholar

[3]

N. J. Balmforth and R. Sassi, A shocking display of synchrony,, Phys. D, 143 (2000), 21.  doi: 10.1016/S0167-2789(00)00095-6.  Google Scholar

[4]

H. Chiba and I. Nishikawa, Center manifold reduction for a large population of globally coupled phase oscillators,, Chaos, 21 (2011).  doi: 10.1063/1.3647317.  Google Scholar

[5]

H. Chiba and D. Pazó, Stability of an $[N/2]$-dimensional invariant torus in the Kuramoto model at small coupling,, Physica D, 238 (2009), 1068.  doi: 10.1016/j.physd.2009.03.005.  Google Scholar

[6]

J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings,, Phys. D, 125 (1999), 1.  doi: 10.1016/S0167-2789(98)00235-8.  Google Scholar

[7]

H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators,, J. Statist. Phys., 60 (1990), 753.  doi: 10.1007/BF01025993.  Google Scholar

[8]

H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function,, Phys. D, 91 (1996), 24.  doi: 10.1016/0167-2789(95)00260-X.  Google Scholar

[9]

M. Frontini and A. Tagliani, Entropy-convergence in Stieltjes and Hamburger moment problem,, Appl. Math. Comput., 88 (1997), 39.  doi: 10.1016/S0096-3003(96)00305-0.  Google Scholar

[10]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators,, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420.   Google Scholar

[11]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Springer Series in Synergetics, 19 (1984).  doi: 10.1007/978-3-642-69689-3.  Google Scholar

[12]

Y. Maistrenko, O. Popovych, O. Burylko and P. A. Tass, Mechanism of desynchronization in the finite-dimensional Kuramoto model,, Phys. Rev. Lett., 93 (2004).   Google Scholar

[13]

Y. L. Maistrenko, O. V. Popovych and P. A. Tass, Chaotic attractor in the Kuramoto model,, Int. J. of Bif. and Chaos, 15 (2005), 3457.  doi: 10.1142/S0218127405014155.  Google Scholar

[14]

E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott , P. So and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.026204.  Google Scholar

[15]

R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model,, J. Nonlinear Sci., 17 (2007), 309.  doi: 10.1007/s00332-006-0806-x.  Google Scholar

[16]

C. J. Perez and F. Ritort, A moment-based approach to the dynamical solution of the Kuramoto model,, J. Phys. A, 30 (1997), 8095.  doi: 10.1088/0305-4470/30/23/010.  Google Scholar

[17]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511755743.  Google Scholar

[18]

J. A. Shohat and J. D. Tamarkin, "The Problem of Moments,", American Mathematical Society, (1943).   Google Scholar

[19]

B. Simon, The classical moment problem as a self-adjoint finite difference operator,, Adv. Math., 137 (1998), 82.  doi: 10.1006/aima.1998.1728.  Google Scholar

[20]

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,, Phys. D, 143 (2000), 1.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[21]

S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,, Phys. Rev. Lett., 68 (1992), 2730.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar

[22]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators,, J. Statist. Phys., 63 (1991), 613.  doi: 10.1007/BF01029202.  Google Scholar

[1]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[2]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[5]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[8]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[9]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[10]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[11]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[14]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[15]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[16]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[19]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[20]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]