-
Previous Article
Stochastic perturbations and Ulam's method for W-shaped maps
- DCDS Home
- This Issue
-
Next Article
Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
From log Sobolev to Talagrand: A quick proof
1. | Laboratoire J. A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice, France |
2. | Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse, France |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, (). Google Scholar |
[2] |
_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011). Google Scholar |
[3] |
_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011). Google Scholar |
[4] |
S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.
doi: 10.1016/S0021-7824(01)01208-9. |
[5] |
J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.
doi: 10.1007/s000390050094. |
[6] |
N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011). Google Scholar |
[7] |
N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480.
doi: 10.1214/09-AOP470. |
[8] |
N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635.
|
[9] |
N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011). Google Scholar |
[10] |
J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163.
doi: 10.1090/S0273-0979-07-01140-8. |
[11] |
J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219.
doi: 10.1016/j.matpur.2007.06.003. |
[12] |
F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.
doi: 10.1081/PDE-100002243. |
[13] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.
doi: 10.1006/jfan.1999.3557. |
[14] |
M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587.
doi: 10.1007/BF02249265. |
[15] |
C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009).
doi: 10.1007/978-3-540-71050-9. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, (). Google Scholar |
[2] |
_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011). Google Scholar |
[3] |
_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011). Google Scholar |
[4] |
S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.
doi: 10.1016/S0021-7824(01)01208-9. |
[5] |
J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.
doi: 10.1007/s000390050094. |
[6] |
N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011). Google Scholar |
[7] |
N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480.
doi: 10.1214/09-AOP470. |
[8] |
N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635.
|
[9] |
N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011). Google Scholar |
[10] |
J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163.
doi: 10.1090/S0273-0979-07-01140-8. |
[11] |
J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219.
doi: 10.1016/j.matpur.2007.06.003. |
[12] |
F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.
doi: 10.1081/PDE-100002243. |
[13] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.
doi: 10.1006/jfan.1999.3557. |
[14] |
M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587.
doi: 10.1007/BF02249265. |
[15] |
C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009).
doi: 10.1007/978-3-540-71050-9. |
[1] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[2] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[3] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[4] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[5] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[6] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[7] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[8] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[9] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[10] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[11] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]