• Previous Article
    Stochastic perturbations and Ulam's method for W-shaped maps
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
May  2013, 33(5): 1927-1935. doi: 10.3934/dcds.2013.33.1927

From log Sobolev to Talagrand: A quick proof

1. 

Laboratoire J. A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice, France

2. 

Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse, France

Received  December 2011 Revised  February 2012 Published  December 2012

We provide yet another proof of the Otto-Villani theorem from the log Sobolev inequality to the Talagrand transportation cost inequality valid in arbitrary metric measure spaces. The argument relies on the recent development [2] identifying gradient flows in Hilbert space and in Wassertein space, emphasizing one key step as precisely the root of the Otto-Villani theorem. The approach does not require the doubling property or the validity of the local Poincaré inequality.
Citation: Nicola Gigli, Michel Ledoux. From log Sobolev to Talagrand: A quick proof. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1927-1935. doi: 10.3934/dcds.2013.33.1927
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, ().   Google Scholar

[2]

_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011).   Google Scholar

[3]

_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011).   Google Scholar

[4]

S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.  doi: 10.1016/S0021-7824(01)01208-9.  Google Scholar

[5]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.  doi: 10.1007/s000390050094.  Google Scholar

[6]

N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011).   Google Scholar

[7]

N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480.  doi: 10.1214/09-AOP470.  Google Scholar

[8]

N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635.   Google Scholar

[9]

N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011).   Google Scholar

[10]

J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163.  doi: 10.1090/S0273-0979-07-01140-8.  Google Scholar

[11]

J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219.  doi: 10.1016/j.matpur.2007.06.003.  Google Scholar

[12]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[13]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[14]

M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587.  doi: 10.1007/BF02249265.  Google Scholar

[15]

C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, ().   Google Scholar

[2]

_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011).   Google Scholar

[3]

_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011).   Google Scholar

[4]

S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669.  doi: 10.1016/S0021-7824(01)01208-9.  Google Scholar

[5]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.  doi: 10.1007/s000390050094.  Google Scholar

[6]

N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011).   Google Scholar

[7]

N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480.  doi: 10.1214/09-AOP470.  Google Scholar

[8]

N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635.   Google Scholar

[9]

N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011).   Google Scholar

[10]

J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163.  doi: 10.1090/S0273-0979-07-01140-8.  Google Scholar

[11]

J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219.  doi: 10.1016/j.matpur.2007.06.003.  Google Scholar

[12]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[13]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[14]

M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587.  doi: 10.1007/BF02249265.  Google Scholar

[15]

C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[3]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[6]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[7]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[8]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[11]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]