May  2013, 33(5): 1937-1944. doi: 10.3934/dcds.2013.33.1937

Stochastic perturbations and Ulam's method for W-shaped maps

1. 

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada, Canada

Received  November 2011 Revised  January 2012 Published  December 2012

For a discrete dynamical system given by a map $\tau :I\rightarrow I$, the long term behavior is described by the probability density function (pdf) of an absolutely continuous invariant measure. This pdf is the fixed point of the Frobenius-Perron operator on $L^{1}(I)$ induced by $\tau$. Ulam suggested a numerical procedure for approximating a pdf by using matrix approximations to the Frobenius-Perron operator. In [12] Li proved the convergence for maps which are piecewise $C^{2}$ and satisfy $| \tau'| >2.$ In this paper we will consider a larger class of maps with weaker smoothness conditions and a harmonic slope condition which permits slopes equal to $\pm $2. Using a generalized Lasota-Yorke inequality [4], we establish convergence for the Ulam approximation method for this larger class of maps. Ulam's method is a special case of small stochastic perturbations. We obtain stability of the pdf under such perturbations. Although our conditions apply to many maps, there are important examples which do not satisfy these conditions, for example the $W$-map [7]. The $W$-map is highly unstable in the sense that it is possible to construct perturbations $W_a$ with absolutely continuous invariant measures (acim) $\mu_a$ such that $\mu_a$ converge to a singular measure although $W_a$ converge to $W$. We prove the convergence of Ulam's method for the $W$-map by direct calculations.
Citation: Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937
References:
[1]

Ch. J. Bose and R. Murray, The exact rate of approximation in Ulam's method,, Discrete and Continuous Dynamical Systems, 7 (2001), 219.   Google Scholar

[2]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,", Probability and its Applications, (1997).  doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[3]

Jiu Ding and Aihui Zhou, "Statistical Properties of Deterministic Systems,", Tsinghua University Texts, (2009).  doi: 10.1007/978-3-540-85367-1.  Google Scholar

[4]

P. Eslami and P. Góra, Stronger Lasota-Yorke inequality for piecewise monotonic transformations,, Preprint, ().   Google Scholar

[5]

P. Eslami and M. Misiurewicz, Singular limits of absolutely continuous invariant measures for families of transitive map,, Journal of Difference Equations and Applications., ().  doi: 10.1080/10236198.2011.590480.  Google Scholar

[6]

P. Góra, On small stochastic perturbations of mappings of the unit interval,, Colloq. Math., 49 (1984), 73.   Google Scholar

[7]

G. Keller, Stochastic stability in some chaotic dynamical systems,, Monatshefte für Mathematik, 94 (1982), 313.  doi: 10.1007/BF01667385.  Google Scholar

[8]

G. Keller and C. Liverani., Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[9]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.   Google Scholar

[10]

Z. Li, P. Góra, A. Boyarsky, H. Proppe and P. Eslami, A family of piecewise expanding maps having singular measure as a limit of acim's,, in press, ().  doi: 10.1017/S0143385711000836.  Google Scholar

[11]

Z. Li, W-like maps with various instabilities of acim's,, Preprint, ().   Google Scholar

[12]

T. Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture,, Jour. Approx. Theory, 17 (1976), 177.   Google Scholar

[13]

R. Murray, Ulam's method for some non-uniformly expanding maps,, Discrete and Continuous Dynamical Systems, 26 (2010), 1007.  doi: 10.3934/dcds.2010.26.1007.  Google Scholar

[14]

R. Murray, Existence, mixing and approximation of invariant densities for expanding maps on $R^r$,, Nonlinear Analysis TMA, 45 (2001), 37.  doi: 10.1016/S0362-546X(99)00329-6.  Google Scholar

[15]

S. M. Ulam, "A Collection of Mathematical Problems,", Interscience Tracts in Pure and Applied Mathematics, (1960).   Google Scholar

show all references

References:
[1]

Ch. J. Bose and R. Murray, The exact rate of approximation in Ulam's method,, Discrete and Continuous Dynamical Systems, 7 (2001), 219.   Google Scholar

[2]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,", Probability and its Applications, (1997).  doi: 10.1007/978-1-4612-2024-4.  Google Scholar

[3]

Jiu Ding and Aihui Zhou, "Statistical Properties of Deterministic Systems,", Tsinghua University Texts, (2009).  doi: 10.1007/978-3-540-85367-1.  Google Scholar

[4]

P. Eslami and P. Góra, Stronger Lasota-Yorke inequality for piecewise monotonic transformations,, Preprint, ().   Google Scholar

[5]

P. Eslami and M. Misiurewicz, Singular limits of absolutely continuous invariant measures for families of transitive map,, Journal of Difference Equations and Applications., ().  doi: 10.1080/10236198.2011.590480.  Google Scholar

[6]

P. Góra, On small stochastic perturbations of mappings of the unit interval,, Colloq. Math., 49 (1984), 73.   Google Scholar

[7]

G. Keller, Stochastic stability in some chaotic dynamical systems,, Monatshefte für Mathematik, 94 (1982), 313.  doi: 10.1007/BF01667385.  Google Scholar

[8]

G. Keller and C. Liverani., Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141.   Google Scholar

[9]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations,, Trans. Amer. Math. Soc., 186 (1973), 481.   Google Scholar

[10]

Z. Li, P. Góra, A. Boyarsky, H. Proppe and P. Eslami, A family of piecewise expanding maps having singular measure as a limit of acim's,, in press, ().  doi: 10.1017/S0143385711000836.  Google Scholar

[11]

Z. Li, W-like maps with various instabilities of acim's,, Preprint, ().   Google Scholar

[12]

T. Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture,, Jour. Approx. Theory, 17 (1976), 177.   Google Scholar

[13]

R. Murray, Ulam's method for some non-uniformly expanding maps,, Discrete and Continuous Dynamical Systems, 26 (2010), 1007.  doi: 10.3934/dcds.2010.26.1007.  Google Scholar

[14]

R. Murray, Existence, mixing and approximation of invariant densities for expanding maps on $R^r$,, Nonlinear Analysis TMA, 45 (2001), 37.  doi: 10.1016/S0362-546X(99)00329-6.  Google Scholar

[15]

S. M. Ulam, "A Collection of Mathematical Problems,", Interscience Tracts in Pure and Applied Mathematics, (1960).   Google Scholar

[1]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[2]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[3]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[6]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[12]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[13]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[14]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[15]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[18]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[19]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[20]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]