-
Previous Article
Two problems related to prescribed curvature measures
- DCDS Home
- This Issue
-
Next Article
Actions of Baumslag-Solitar groups on surfaces
Phase transitions in one-dimensional subshifts
1. | Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States |
References:
[1] |
R. Bowen, Some systems with unique equilibrium states,, Math. Syst. Th., 8 (1975), 193.
|
[2] |
R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type,, Ergod. Th. Dynam. Sys., 14 (1994), 213.
doi: 10.1017/S0143385700007859. |
[3] |
R. Burton and J. E. Steif, New results on measures of maximal entropy,, Israel J. Math., 89 (1995), 275.
doi: 10.1007/BF02808205. |
[4] |
H. O. Georgii, "Gibbs Measures and Phase Transitions,", de Gruyter Studies in Mathematics, 9 (1988).
doi: 10.1515/9783110850147. |
[5] |
B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph,, Dokl. Akad. Nauk. SSSR, 192 (1970), 744.
|
[6] |
Hofbauer, Examples for the nonuniqueness of the equilibrium state,, AMS Transactions, 228 (1977), 223.
|
[7] |
W. Krieger, On the uniqueness of the equilibrium state,, Math. Systems Theory, 8 (1974), 97.
|
[8] |
P Walter, "An Introduction to Ergodic Theory,'', Springer-Verlag, 79 (1982).
|
show all references
References:
[1] |
R. Bowen, Some systems with unique equilibrium states,, Math. Syst. Th., 8 (1975), 193.
|
[2] |
R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type,, Ergod. Th. Dynam. Sys., 14 (1994), 213.
doi: 10.1017/S0143385700007859. |
[3] |
R. Burton and J. E. Steif, New results on measures of maximal entropy,, Israel J. Math., 89 (1995), 275.
doi: 10.1007/BF02808205. |
[4] |
H. O. Georgii, "Gibbs Measures and Phase Transitions,", de Gruyter Studies in Mathematics, 9 (1988).
doi: 10.1515/9783110850147. |
[5] |
B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph,, Dokl. Akad. Nauk. SSSR, 192 (1970), 744.
|
[6] |
Hofbauer, Examples for the nonuniqueness of the equilibrium state,, AMS Transactions, 228 (1977), 223.
|
[7] |
W. Krieger, On the uniqueness of the equilibrium state,, Math. Systems Theory, 8 (1974), 97.
|
[8] |
P Walter, "An Introduction to Ergodic Theory,'', Springer-Verlag, 79 (1982).
|
[1] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[2] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[3] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[4] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[5] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[9] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[10] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[11] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]