-
Previous Article
Two problems related to prescribed curvature measures
- DCDS Home
- This Issue
-
Next Article
Actions of Baumslag-Solitar groups on surfaces
Phase transitions in one-dimensional subshifts
1. | Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States |
References:
[1] |
R. Bowen, Some systems with unique equilibrium states, Math. Syst. Th., 8 (1975), 193-202. |
[2] |
R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type, Ergod. Th. Dynam. Sys., 14 (1994), 213-235.
doi: 10.1017/S0143385700007859. |
[3] |
R. Burton and J. E. Steif, New results on measures of maximal entropy, Israel J. Math., 89 (1995), 275-300.
doi: 10.1007/BF02808205. |
[4] |
H. O. Georgii, "Gibbs Measures and Phase Transitions," de Gruyter Studies in Mathematics, 9, 1988.
doi: 10.1515/9783110850147. |
[5] |
B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph, Dokl. Akad. Nauk. SSSR, 192 (1970); Engl. transl. in Soviet Math. Dokl., 11 (1970), 744-747. |
[6] |
Hofbauer, Examples for the nonuniqueness of the equilibrium state, AMS Transactions, 228 (1977), 223-241. |
[7] |
W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104. |
[8] |
P Walter, "An Introduction to Ergodic Theory,'' Springer-Verlag, GTM, 79, 1982 |
show all references
References:
[1] |
R. Bowen, Some systems with unique equilibrium states, Math. Syst. Th., 8 (1975), 193-202. |
[2] |
R. Burton and J. E. Steif, Nonuniqueness of measures of maximal entropy for subshifts of finite type, Ergod. Th. Dynam. Sys., 14 (1994), 213-235.
doi: 10.1017/S0143385700007859. |
[3] |
R. Burton and J. E. Steif, New results on measures of maximal entropy, Israel J. Math., 89 (1995), 275-300.
doi: 10.1007/BF02808205. |
[4] |
H. O. Georgii, "Gibbs Measures and Phase Transitions," de Gruyter Studies in Mathematics, 9, 1988.
doi: 10.1515/9783110850147. |
[5] |
B. M. Gurevic, Shift entropy and Markov measures in the path space of a denumerable graph, Dokl. Akad. Nauk. SSSR, 192 (1970); Engl. transl. in Soviet Math. Dokl., 11 (1970), 744-747. |
[6] |
Hofbauer, Examples for the nonuniqueness of the equilibrium state, AMS Transactions, 228 (1977), 223-241. |
[7] |
W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104. |
[8] |
P Walter, "An Introduction to Ergodic Theory,'' Springer-Verlag, GTM, 79, 1982 |
[1] |
Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 |
[2] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[3] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[4] |
Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371 |
[5] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[6] |
Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257 |
[7] |
Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001 |
[8] |
Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 |
[9] |
Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545 |
[10] |
Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139 |
[11] |
Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497 |
[12] |
Silvère Gangloff. Characterizing entropy dimensions of minimal mutidimensional subshifts of finite type. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 931-988. doi: 10.3934/dcds.2021143 |
[13] |
Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593 |
[14] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[15] |
Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005 |
[16] |
Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29 |
[17] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[18] |
Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163 |
[19] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565 |
[20] |
Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]