    May  2013, 33(5): 1987-2005. doi: 10.3934/dcds.2013.33.1987

## Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality

 1 Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097, China 2 School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116, China

Received  November 2011 Revised  March 2012 Published  December 2012

This paper is concerned with the symmetry results for the $2k$-order singular Lane-Emden type partial differential system $$\left\{\begin{array}{ll} (-\Delta)^k(|x|^{\alpha}u(x)) =|x|^{-\beta} v^{q}(x), \\ (-\Delta)^k(|x|^{\beta}v(x)) =|x|^{-\alpha} u^p(x), \end{array} \right.$$ and the weighted Hardy-Littlewood-Sobolev type integral system $$\left \{ \begin{array}{l} u(x) = \frac{1}{|x|^{\alpha}}\int_{R^{n}} \frac{v^q(y)}{|y|^{\beta}|x-y|^{\lambda}} dy\\ v(x) = \frac{1}{|x|^{\beta}}\int_{R^{n}} \frac{u^p(y)}{|y|^{\alpha}|x-y|^{\lambda}} dy. \end{array} \right.$$ Here $x \in R^n \setminus \{0\}$. We first establish the equivalence of this integral system and an fractional order partial differential system, which includes the $2k$-order PDE system above. For the integral system, we prove that the positive locally bounded solutions are symmetric and decreasing about some axis by means of the method of moving planes in integral forms introduced by Chen-Li-Ou. In addition, we also show that the integrable solutions are locally bounded. Thus, the equivalence implies the positive solutions of the PDE system, particularly including the higher integer-order PDE system, also have the corresponding properties.
Citation: Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987
##### References:
  L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.  Google Scholar  G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.  Google Scholar  A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry, Math. Res. Letters, 4 (1997), 91-102. Google Scholar  W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar  W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547-564. doi: 10.2307/2951844.  Google Scholar  W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar  W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, arXiv:1110.2539v1, 2011. Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar  B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Collected in the book Mathematical\, Analysis and Applications, Which is 7a of the Book Series Advances in Mathematics. Supplementary Studies, Academic Press, New York, (1981). Google Scholar  D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1977. Google Scholar  C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar  C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.  Google Scholar  Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.  Google Scholar  Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar  Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations, Comm. Pure Appl. Anal., 10 (2011), 193-207. doi: 10.3934/cpaa.2011.10.193.  Google Scholar  C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231. doi: 10.1007/s002220050023.  Google Scholar  C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.  Google Scholar  Y. Li, Remark on some conformally invariant integral equations: The method of moving planes, J. Eur. Math. Soc., 6 (2004), 153-180. Google Scholar  E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^n$, J. Differential equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.  Google Scholar  M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality, J. Math. Anal. Appl., 389 (2012), 498-510. doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar  J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. Google Scholar  E. M. Stein, "Singular Integrals and Differentiability Properties of Function," Princetion Math. Series, 30. Princetion University Press, (1970), xiv+290 pp. Google Scholar  E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. Google Scholar  J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar

show all references

##### References:
  L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.  Google Scholar  G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.  Google Scholar  A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry, Math. Res. Letters, 4 (1997), 91-102. Google Scholar  W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar  W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547-564. doi: 10.2307/2951844.  Google Scholar  W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.  Google Scholar  W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, arXiv:1110.2539v1, 2011. Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.  Google Scholar  B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Collected in the book Mathematical\, Analysis and Applications, Which is 7a of the Book Series Advances in Mathematics. Supplementary Studies, Academic Press, New York, (1981). Google Scholar  D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1977. Google Scholar  C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar  C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.  Google Scholar  Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.  Google Scholar  Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.  Google Scholar  Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations, Comm. Pure Appl. Anal., 10 (2011), 193-207. doi: 10.3934/cpaa.2011.10.193.  Google Scholar  C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231. doi: 10.1007/s002220050023.  Google Scholar  C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.  Google Scholar  Y. Li, Remark on some conformally invariant integral equations: The method of moving planes, J. Eur. Math. Soc., 6 (2004), 153-180. Google Scholar  E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.  Google Scholar  J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^n$, J. Differential equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.  Google Scholar  M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality, J. Math. Anal. Appl., 389 (2012), 498-510. doi: 10.1016/j.jmaa.2011.12.004.  Google Scholar  J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. Google Scholar  E. M. Stein, "Singular Integrals and Differentiability Properties of Function," Princetion Math. Series, 30. Princetion University Press, (1970), xiv+290 pp. Google Scholar  E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. Google Scholar  J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.  Google Scholar
  Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951  Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011  Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791  Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935  Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164  Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057  Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469  Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058  Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291  Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167  Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027  Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171  Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018  Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021184  Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036  Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018  Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510  Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653  Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022  Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

2020 Impact Factor: 1.392