May  2013, 33(5): 2085-2104. doi: 10.3934/dcds.2013.33.2085

Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Received  April 2011 Revised  October 2012 Published  December 2012

We consider Hölder continuous $GL(2,\mathbb{R})$-valued cocycles over a transitive Anosov diffeomorphism. We give a complete classification up to Hölder cohomology of cocycles with one Lyapunov exponent and of cocycles that preserve two transverse Hölder continuous sub-bundles. We prove that a measurable cohomology between two such cocycles is Hölder continuous. We also show that conjugacy of periodic data for two such cocycles does not always imply cohomology, but a slightly stronger assumption does. We describe examples that indicate that our main results do not extend to general $GL(2,\mathbb{R})$-valued cocycles.
Citation: Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085
References:
[1]

A. Gogolev, On diffeomorphismsHölder conjugate to Anosov ones,, Ergodic Theory Dynam. Systems, 30 (2010), 441.  doi: 10.1017/S0143385709000169.  Google Scholar

[2]

M. Guysinsky, Some results about Livšic theorem for $2\times 2$ matrix valued cocycles,, Preprint., ().   Google Scholar

[3]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Mathematics, 173 (2011), 1025.  doi: 10.4007/annals.2011.173.2.11.  Google Scholar

[4]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems andcriteria of conformality,, Journal of Modern Dynamics, 4 (2010), 419.  doi: 10.3934/jmd.2010.4.419.  Google Scholar

[5]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Math. and Its Applications, 54 (1995).   Google Scholar

[6]

R. de la Llave and A. Windsor, Livšic theorem for non-commutative groups including groups of diffeomorphisms, and invariant geometric structures,, Ergodic Theory Dynam. Systems, 30 (2010), 1055.  doi: 10.1017/S014338570900039X.  Google Scholar

[7]

A. N. Livšic, Homology properties of Y-systems,, Math. Zametki, 10 (1971), 758.   Google Scholar

[8]

A. N. Livšic, Cohomology of dynamical systems,, Math. USSR Izvestija, 6 (1972), 1278.   Google Scholar

[9]

V. Niţică and A. Török, Regularity of the transfer map for cohomologous cocycles,, Ergodic Theory Dynam. Systems, 18 (1998), 1187.  doi: 10.1017/S0143385798117480.  Google Scholar

[10]

M. Nicol and M. Pollicott, Measurable cocycle rigidity for some non-compact groups,, Bull. London Math. Soc., 31 (1999), 592.  doi: 10.1112/S0024609399005937.  Google Scholar

[11]

W. Parry, The Livšic periodic point theorem for non-Abelian cocycles,, Ergodic Theory Dynam. Systems, 19 (1999), 687.  doi: 10.1017/S0143385799146789.  Google Scholar

[12]

M. Pollicott and C. P. Walkden, Livšic theorems for connected Lie groups,, Trans. Amer. Math. Soc., 353 (2001), 2879.  doi: 10.1090/S0002-9947-01-02708-8.  Google Scholar

[13]

K. Schmidt, Remarks on Livšic theory for non-Abelian cocycles,, Ergodic Theory Dynam. Systems, 19 (1999), 703.  doi: 10.1017/S0143385799146790.  Google Scholar

show all references

References:
[1]

A. Gogolev, On diffeomorphismsHölder conjugate to Anosov ones,, Ergodic Theory Dynam. Systems, 30 (2010), 441.  doi: 10.1017/S0143385709000169.  Google Scholar

[2]

M. Guysinsky, Some results about Livšic theorem for $2\times 2$ matrix valued cocycles,, Preprint., ().   Google Scholar

[3]

B. Kalinin, Livšic theorem for matrix cocycles,, Annals of Mathematics, 173 (2011), 1025.  doi: 10.4007/annals.2011.173.2.11.  Google Scholar

[4]

B. Kalinin and V. Sadovskaya, Linear cocycles over hyperbolic systems andcriteria of conformality,, Journal of Modern Dynamics, 4 (2010), 419.  doi: 10.3934/jmd.2010.4.419.  Google Scholar

[5]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Math. and Its Applications, 54 (1995).   Google Scholar

[6]

R. de la Llave and A. Windsor, Livšic theorem for non-commutative groups including groups of diffeomorphisms, and invariant geometric structures,, Ergodic Theory Dynam. Systems, 30 (2010), 1055.  doi: 10.1017/S014338570900039X.  Google Scholar

[7]

A. N. Livšic, Homology properties of Y-systems,, Math. Zametki, 10 (1971), 758.   Google Scholar

[8]

A. N. Livšic, Cohomology of dynamical systems,, Math. USSR Izvestija, 6 (1972), 1278.   Google Scholar

[9]

V. Niţică and A. Török, Regularity of the transfer map for cohomologous cocycles,, Ergodic Theory Dynam. Systems, 18 (1998), 1187.  doi: 10.1017/S0143385798117480.  Google Scholar

[10]

M. Nicol and M. Pollicott, Measurable cocycle rigidity for some non-compact groups,, Bull. London Math. Soc., 31 (1999), 592.  doi: 10.1112/S0024609399005937.  Google Scholar

[11]

W. Parry, The Livšic periodic point theorem for non-Abelian cocycles,, Ergodic Theory Dynam. Systems, 19 (1999), 687.  doi: 10.1017/S0143385799146789.  Google Scholar

[12]

M. Pollicott and C. P. Walkden, Livšic theorems for connected Lie groups,, Trans. Amer. Math. Soc., 353 (2001), 2879.  doi: 10.1090/S0002-9947-01-02708-8.  Google Scholar

[13]

K. Schmidt, Remarks on Livšic theory for non-Abelian cocycles,, Ergodic Theory Dynam. Systems, 19 (1999), 703.  doi: 10.1017/S0143385799146790.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[8]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[9]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[10]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[11]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[12]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[13]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[14]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[15]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[16]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]