-
Previous Article
Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations
- DCDS Home
- This Issue
-
Next Article
Variational methods for non-local operators of elliptic type
Resonance problems for Kirchhoff type equations
1. | School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
References:
[1] |
S. Ahmad, A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance,, Indiana Univ. Math. J., 25 (1976), 933.
|
[2] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.
doi: 10.1016/j.camwa.2005.01.008. |
[3] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlinear Anal., 7 (1983), 981.
doi: 10.1016/0362-546X(83)90115-3. |
[4] |
J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 7.
doi: 10.1006/jmaa.2000.6713. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth,, J. Math Anal. Appl., 127 (1987), 435.
doi: 10.1016/0022-247X(87)90121-1. |
[7] |
P. Drábek and S. B. Robison, Resonance problems for the $p$-Laplacian,, J. Funct. Anal., 169 (1999), 189.
doi: 10.1006/jfan.1999.3501. |
[8] |
C. P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition,, J. Math. Anal. Appl., 129 (1988), 482.
doi: 10.1016/0022-247X(88)90266-1. |
[9] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, J. Differential Equations, 252 (2011), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[10] |
E. Landesman and A. Lazer, Nonlinear perturbation of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (1970), 609.
|
[11] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.
doi: 10.1016/S0893-9659(03)80038-1. |
[12] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition,, Nonlinear Anal., 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[13] |
J. Mawhin, J. R. Ward and M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem,, Proc. Amer. Math. Soc., 93 (1985), 667.
doi: 10.2307/2045542. |
[14] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).
|
[15] |
Z. Q. Ou and C. L. Tang, Resonance problems for the $p$-Laplacian systems,, J. Math. Anal. Appl., 345 (2008), 511.
doi: 10.1016/j.jmaa.2008.04.001. |
[16] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.
doi: 10.1016/j.jde.2005.03.006. |
[17] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).
|
[18] |
E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance,, Nonlinear Anal., 16 (1991), 455.
doi: 10.1016/0362-546X(91)90070-H. |
[19] |
S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition,, Nonlinear Anal., 64 (2006), 2007.
doi: 10.1016/j.na.2005.07.035. |
[20] |
M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", $3^{rd}$ Edition, (2000).
|
[21] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.
doi: 10.1016/j.na.2010.09.061. |
[22] |
C. L. Tang, Solvability for two-point boundary value problems,, J. Math. Anal. Appl., 216 (1997), 368.
doi: 10.1006/jmaa.1997.5664. |
[23] |
C. L. Tang, Solvability of the forced duffing equation at resonance,, J. Math. Anal. Appl., 219 (1998), 110.
doi: 10.1006/jmaa.1997.5793. |
[24] |
C. L. Tang, Solvability of Neumann problem for elliptic equations at resonance,, Nonlinear Anal., 44 (2001), 323.
doi: 10.1016/S0362-546X(99)00266-7. |
[25] |
J. R. Ward, A boundary value problem with a periodic nonlinearity,, Nonlinear Anal., 10 (1986), 207.
doi: 10.1016/0362-546X(86)90047-7. |
[26] |
X. P. Wu and C. L. Tang, Some existence theorems for elliptic resonant problems,, J. Math. Anal. Appl., 264 (2001), 133.
doi: 10.1006/jmaa.2001.7660. |
[27] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
[28] |
X. X. Zhao and C. L. Tang, Resonance problems for $(p,q)$-Laplacian systems,, Nonlinear Anal., 72 (2010), 1019.
doi: 10.1016/j.na.2009.07.043. |
show all references
References:
[1] |
S. Ahmad, A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance,, Indiana Univ. Math. J., 25 (1976), 933.
|
[2] |
C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.
doi: 10.1016/j.camwa.2005.01.008. |
[3] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlinear Anal., 7 (1983), 981.
doi: 10.1016/0362-546X(83)90115-3. |
[4] |
J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 7.
doi: 10.1006/jmaa.2000.6713. |
[5] |
C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.
doi: 10.1016/j.jde.2010.11.017. |
[6] |
P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth,, J. Math Anal. Appl., 127 (1987), 435.
doi: 10.1016/0022-247X(87)90121-1. |
[7] |
P. Drábek and S. B. Robison, Resonance problems for the $p$-Laplacian,, J. Funct. Anal., 169 (1999), 189.
doi: 10.1006/jfan.1999.3501. |
[8] |
C. P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition,, J. Math. Anal. Appl., 129 (1988), 482.
doi: 10.1016/0022-247X(88)90266-1. |
[9] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, J. Differential Equations, 252 (2011), 1813.
doi: 10.1016/j.jde.2011.08.035. |
[10] |
E. Landesman and A. Lazer, Nonlinear perturbation of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (1970), 609.
|
[11] |
T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.
doi: 10.1016/S0893-9659(03)80038-1. |
[12] |
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition,, Nonlinear Anal., 70 (2009), 1275.
doi: 10.1016/j.na.2008.02.011. |
[13] |
J. Mawhin, J. R. Ward and M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem,, Proc. Amer. Math. Soc., 93 (1985), 667.
doi: 10.2307/2045542. |
[14] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989).
|
[15] |
Z. Q. Ou and C. L. Tang, Resonance problems for the $p$-Laplacian systems,, J. Math. Anal. Appl., 345 (2008), 511.
doi: 10.1016/j.jmaa.2008.04.001. |
[16] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246.
doi: 10.1016/j.jde.2005.03.006. |
[17] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986).
|
[18] |
E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance,, Nonlinear Anal., 16 (1991), 455.
doi: 10.1016/0362-546X(91)90070-H. |
[19] |
S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition,, Nonlinear Anal., 64 (2006), 2007.
doi: 10.1016/j.na.2005.07.035. |
[20] |
M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", $3^{rd}$ Edition, (2000).
|
[21] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.
doi: 10.1016/j.na.2010.09.061. |
[22] |
C. L. Tang, Solvability for two-point boundary value problems,, J. Math. Anal. Appl., 216 (1997), 368.
doi: 10.1006/jmaa.1997.5664. |
[23] |
C. L. Tang, Solvability of the forced duffing equation at resonance,, J. Math. Anal. Appl., 219 (1998), 110.
doi: 10.1006/jmaa.1997.5793. |
[24] |
C. L. Tang, Solvability of Neumann problem for elliptic equations at resonance,, Nonlinear Anal., 44 (2001), 323.
doi: 10.1016/S0362-546X(99)00266-7. |
[25] |
J. R. Ward, A boundary value problem with a periodic nonlinearity,, Nonlinear Anal., 10 (1986), 207.
doi: 10.1016/0362-546X(86)90047-7. |
[26] |
X. P. Wu and C. L. Tang, Some existence theorems for elliptic resonant problems,, J. Math. Anal. Appl., 264 (2001), 133.
doi: 10.1006/jmaa.2001.7660. |
[27] |
Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.
doi: 10.1016/j.jmaa.2005.06.102. |
[28] |
X. X. Zhao and C. L. Tang, Resonance problems for $(p,q)$-Laplacian systems,, Nonlinear Anal., 72 (2010), 1019.
doi: 10.1016/j.na.2009.07.043. |
[1] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[2] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[3] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[4] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[5] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[6] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[7] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[8] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[11] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[12] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[13] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[14] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[17] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[18] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[19] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[20] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]