May  2013, 33(5): 2155-2168. doi: 10.3934/dcds.2013.33.2155

Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations

1. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada

2. 

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China

3. 

Dept. of Math., Zhengzhou University, Zhengzhou 450001

Received  December 2011 Revised  August 2012 Published  December 2012

We analyze the non-degeneracy of the linear $2n$-order differential equation $u^{(2n)}+\sum\limits_{m=1}^{2n-1}a_{m}u^{(m)}=q(t)u$ with potential $q(t)\in L^p(\mathbb{R}/T\mathbb{Z})$, by means of new forms of the optimal Sobolev and Wirtinger inequalities. The results is applied to obtain existence and uniqueness of periodic solution for the prescribed nonlinear problem in the semilinear and superlinear case.
Citation: Pedro J. Torres, Zhibo Cheng, Jingli Ren. Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2155-2168. doi: 10.3934/dcds.2013.33.2155
References:
[1]

Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation,, Nonlinear Anal. TMA, 70 (2009), 516.   Google Scholar

[2]

F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation,, J. Math. Anal. Appl., 241 (2000), 1.  doi: 10.1006/jmaa.1999.6471.  Google Scholar

[3]

F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance,, Nonlinear Anal. TMA, 32 (1998), 787.  doi: 10.1016/S0362-546X(97)00517-8.  Google Scholar

[4]

A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations,, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145.  doi: 10.1017/S0308210500028213.  Google Scholar

[5]

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality,, Sci. Math. Jpn., 65 (2007), 333.   Google Scholar

[6]

A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires,, Ann. Polon. Math., 16 (1964), 69.   Google Scholar

[7]

W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations,, Appl. Math. Lett., 22 (2009), 314.  doi: 10.1016/j.aml.2008.03.027.  Google Scholar

[8]

G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation,, Adv. Nonlinear Stud., 6 (2006), 563.   Google Scholar

[9]

R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem,, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119.  doi: 10.1017/S0308210500003796.  Google Scholar

[10]

L. J. Pan, Periodic solutions for higher order differential equations with deviating argument,, J. Math. Anal. Appl., 343 (2008), 904.  doi: 10.1016/j.jmaa.2008.01.096.  Google Scholar

[11]

J. L. Ren and Z. B. Cheng, On high-order delay differential equation,, Comput. Math. Appl., 57 (2009), 324.  doi: 10.1016/j.camwa.2008.10.071.  Google Scholar

[12]

J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case,, Nonlinear Anal., 71 (2009), 6182.  doi: 10.1016/j.na.2009.06.011.  Google Scholar

[13]

K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation,, J. Math. Anal. Appl., 326 (2007), 1161.  doi: 10.1016/j.jmaa.2006.03.078.  Google Scholar

[14]

J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 81 (1981), 415.  doi: 10.2307/2043477.  Google Scholar

[15]

M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations,, J. Math. Anal. Appl., 209 (1997), 291.  doi: 10.1006/jmaa.1997.5383.  Google Scholar

show all references

References:
[1]

Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation,, Nonlinear Anal. TMA, 70 (2009), 516.   Google Scholar

[2]

F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation,, J. Math. Anal. Appl., 241 (2000), 1.  doi: 10.1006/jmaa.1999.6471.  Google Scholar

[3]

F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance,, Nonlinear Anal. TMA, 32 (1998), 787.  doi: 10.1016/S0362-546X(97)00517-8.  Google Scholar

[4]

A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations,, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145.  doi: 10.1017/S0308210500028213.  Google Scholar

[5]

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality,, Sci. Math. Jpn., 65 (2007), 333.   Google Scholar

[6]

A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires,, Ann. Polon. Math., 16 (1964), 69.   Google Scholar

[7]

W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations,, Appl. Math. Lett., 22 (2009), 314.  doi: 10.1016/j.aml.2008.03.027.  Google Scholar

[8]

G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation,, Adv. Nonlinear Stud., 6 (2006), 563.   Google Scholar

[9]

R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem,, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119.  doi: 10.1017/S0308210500003796.  Google Scholar

[10]

L. J. Pan, Periodic solutions for higher order differential equations with deviating argument,, J. Math. Anal. Appl., 343 (2008), 904.  doi: 10.1016/j.jmaa.2008.01.096.  Google Scholar

[11]

J. L. Ren and Z. B. Cheng, On high-order delay differential equation,, Comput. Math. Appl., 57 (2009), 324.  doi: 10.1016/j.camwa.2008.10.071.  Google Scholar

[12]

J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case,, Nonlinear Anal., 71 (2009), 6182.  doi: 10.1016/j.na.2009.06.011.  Google Scholar

[13]

K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation,, J. Math. Anal. Appl., 326 (2007), 1161.  doi: 10.1016/j.jmaa.2006.03.078.  Google Scholar

[14]

J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 81 (1981), 415.  doi: 10.2307/2043477.  Google Scholar

[15]

M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations,, J. Math. Anal. Appl., 209 (1997), 291.  doi: 10.1006/jmaa.1997.5383.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[3]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[4]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[5]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[8]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[9]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[10]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[11]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[12]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[13]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[14]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[15]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[18]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[19]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[20]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]