May  2013, 33(5): 2155-2168. doi: 10.3934/dcds.2013.33.2155

Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations

1. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada

2. 

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China

3. 

Dept. of Math., Zhengzhou University, Zhengzhou 450001

Received  December 2011 Revised  August 2012 Published  December 2012

We analyze the non-degeneracy of the linear $2n$-order differential equation $u^{(2n)}+\sum\limits_{m=1}^{2n-1}a_{m}u^{(m)}=q(t)u$ with potential $q(t)\in L^p(\mathbb{R}/T\mathbb{Z})$, by means of new forms of the optimal Sobolev and Wirtinger inequalities. The results is applied to obtain existence and uniqueness of periodic solution for the prescribed nonlinear problem in the semilinear and superlinear case.
Citation: Pedro J. Torres, Zhibo Cheng, Jingli Ren. Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2155-2168. doi: 10.3934/dcds.2013.33.2155
References:
[1]

Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation, Nonlinear Anal. TMA, 70 (2009), 516-523.

[2]

F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation, J. Math. Anal. Appl., 241 (2000), 1-9. doi: 10.1006/jmaa.1999.6471.

[3]

F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance, Nonlinear Anal. TMA, 32 (1998), 787-793. doi: 10.1016/S0362-546X(97)00517-8.

[4]

A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145-153. doi: 10.1017/S0308210500028213.

[5]

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality, Sci. Math. Jpn., 65 (2007), 333-359.

[6]

A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires, Ann. Polon. Math., 16 (1964), 69-94

[7]

W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations, Appl. Math. Lett., 22 (2009), 314-319. doi: 10.1016/j.aml.2008.03.027.

[8]

G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation, Adv. Nonlinear Stud., 6 (2006), 563-590.

[9]

R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119-132. doi: 10.1017/S0308210500003796.

[10]

L. J. Pan, Periodic solutions for higher order differential equations with deviating argument, J. Math. Anal. Appl., 343 (2008), 904-918. doi: 10.1016/j.jmaa.2008.01.096.

[11]

J. L. Ren and Z. B. Cheng, On high-order delay differential equation, Comput. Math. Appl., 57 (2009), 324-331. doi: 10.1016/j.camwa.2008.10.071.

[12]

J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case, Nonlinear Anal., 71 (2009), 6182-6193. doi: 10.1016/j.na.2009.06.011.

[13]

K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation, J. Math. Anal. Appl., 326 (2007), 1161-1173. doi: 10.1016/j.jmaa.2006.03.078.

[14]

J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc., 81 (1981), 415-420. doi: 10.2307/2043477.

[15]

M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations, J. Math. Anal. Appl., 209 (1997), 291-298. doi: 10.1006/jmaa.1997.5383.

show all references

References:
[1]

Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation, Nonlinear Anal. TMA, 70 (2009), 516-523.

[2]

F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation, J. Math. Anal. Appl., 241 (2000), 1-9. doi: 10.1006/jmaa.1999.6471.

[3]

F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance, Nonlinear Anal. TMA, 32 (1998), 787-793. doi: 10.1016/S0362-546X(97)00517-8.

[4]

A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145-153. doi: 10.1017/S0308210500028213.

[5]

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality, Sci. Math. Jpn., 65 (2007), 333-359.

[6]

A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires, Ann. Polon. Math., 16 (1964), 69-94

[7]

W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations, Appl. Math. Lett., 22 (2009), 314-319. doi: 10.1016/j.aml.2008.03.027.

[8]

G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation, Adv. Nonlinear Stud., 6 (2006), 563-590.

[9]

R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119-132. doi: 10.1017/S0308210500003796.

[10]

L. J. Pan, Periodic solutions for higher order differential equations with deviating argument, J. Math. Anal. Appl., 343 (2008), 904-918. doi: 10.1016/j.jmaa.2008.01.096.

[11]

J. L. Ren and Z. B. Cheng, On high-order delay differential equation, Comput. Math. Appl., 57 (2009), 324-331. doi: 10.1016/j.camwa.2008.10.071.

[12]

J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case, Nonlinear Anal., 71 (2009), 6182-6193. doi: 10.1016/j.na.2009.06.011.

[13]

K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation, J. Math. Anal. Appl., 326 (2007), 1161-1173. doi: 10.1016/j.jmaa.2006.03.078.

[14]

J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc., 81 (1981), 415-420. doi: 10.2307/2043477.

[15]

M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations, J. Math. Anal. Appl., 209 (1997), 291-298. doi: 10.1006/jmaa.1997.5383.

[1]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128

[2]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[3]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

[4]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4767-4790. doi: 10.3934/dcds.2021056

[5]

Dongfeng Zhang, Junxiang Xu. On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 635-655. doi: 10.3934/dcds.2006.16.635

[6]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[7]

Zhongjie Liu, Duanzhi Zhang. Brake orbits on compact symmetric dynamically convex reversible hypersurfaces on $ \mathbb{R}^\text{2n} $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4187-4206. doi: 10.3934/dcds.2019169

[8]

Paolo Caldiroli. Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on $R^n$. Communications on Pure and Applied Analysis, 2014, 13 (2) : 811-821. doi: 10.3934/cpaa.2014.13.811

[9]

Carmen Cortázar, Marta García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1479-1496. doi: 10.3934/cpaa.2021029

[10]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[11]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[12]

Nikos I. Karachalios, Athanasios N Lyberopoulos. On the dynamics of a degenerate damped semilinear wave equation in \mathbb{R}^N : the non-compact case. Conference Publications, 2007, 2007 (Special) : 531-540. doi: 10.3934/proc.2007.2007.531

[13]

Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021058

[17]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[18]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure and Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[19]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure and Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[20]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]