-
Previous Article
Pushed traveling fronts in monostable equations with monotone delayed reaction
- DCDS Home
- This Issue
-
Next Article
Resonance problems for Kirchhoff type equations
Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations
1. | Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada |
2. | School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454000, China |
3. | Dept. of Math., Zhengzhou University, Zhengzhou 450001 |
References:
[1] |
Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation,, Nonlinear Anal. TMA, 70 (2009), 516. Google Scholar |
[2] |
F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation,, J. Math. Anal. Appl., 241 (2000), 1.
doi: 10.1006/jmaa.1999.6471. |
[3] |
F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance,, Nonlinear Anal. TMA, 32 (1998), 787.
doi: 10.1016/S0362-546X(97)00517-8. |
[4] |
A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations,, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145.
doi: 10.1017/S0308210500028213. |
[5] |
Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality,, Sci. Math. Jpn., 65 (2007), 333.
|
[6] |
A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires,, Ann. Polon. Math., 16 (1964), 69.
|
[7] |
W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations,, Appl. Math. Lett., 22 (2009), 314.
doi: 10.1016/j.aml.2008.03.027. |
[8] |
G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation,, Adv. Nonlinear Stud., 6 (2006), 563.
|
[9] |
R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem,, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119.
doi: 10.1017/S0308210500003796. |
[10] |
L. J. Pan, Periodic solutions for higher order differential equations with deviating argument,, J. Math. Anal. Appl., 343 (2008), 904.
doi: 10.1016/j.jmaa.2008.01.096. |
[11] |
J. L. Ren and Z. B. Cheng, On high-order delay differential equation,, Comput. Math. Appl., 57 (2009), 324.
doi: 10.1016/j.camwa.2008.10.071. |
[12] |
J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case,, Nonlinear Anal., 71 (2009), 6182.
doi: 10.1016/j.na.2009.06.011. |
[13] |
K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation,, J. Math. Anal. Appl., 326 (2007), 1161.
doi: 10.1016/j.jmaa.2006.03.078. |
[14] |
J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 81 (1981), 415.
doi: 10.2307/2043477. |
[15] |
M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations,, J. Math. Anal. Appl., 209 (1997), 291.
doi: 10.1006/jmaa.1997.5383. |
show all references
References:
[1] |
Z. B. Cheng and J. L. Ren, Periodic solutions for a fourth-order Rayleigh type $p$-Laplacian delay equation,, Nonlinear Anal. TMA, 70 (2009), 516. Google Scholar |
[2] |
F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solution for $(2n+1)^{th}$-order differential equation,, J. Math. Anal. Appl., 241 (2000), 1.
doi: 10.1006/jmaa.1999.6471. |
[3] |
F. Z. Cong, Periodic solutions for $2k$th order ordinary differential equations with nonresonance,, Nonlinear Anal. TMA, 32 (1998), 787.
doi: 10.1016/S0362-546X(97)00517-8. |
[4] |
A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations,, Proc. Royal Soc. Edinburgh Sect. A, 112 (1989), 145.
doi: 10.1017/S0308210500028213. |
[5] |
Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality,, Sci. Math. Jpn., 65 (2007), 333.
|
[6] |
A. Lasota and Z. Opial, Sur les solutions périodiques des equations differentielles ordinaires,, Ann. Polon. Math., 16 (1964), 69.
|
[7] |
W. Li and M. R. Zhang, Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations,, Appl. Math. Lett., 22 (2009), 314.
doi: 10.1016/j.aml.2008.03.027. |
[8] |
G. Meng, P. Yan, X. Y. Lin and M. R. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation,, Adv. Nonlinear Stud., 6 (2006), 563.
|
[9] |
R. Ortega and M. Zhang, Some optimal bounds for bifurcation values of a superlinear periodic problem,, Proc. Royal Soc. Edinburgh Sect. A, 135 (2005), 119.
doi: 10.1017/S0308210500003796. |
[10] |
L. J. Pan, Periodic solutions for higher order differential equations with deviating argument,, J. Math. Anal. Appl., 343 (2008), 904.
doi: 10.1016/j.jmaa.2008.01.096. |
[11] |
J. L. Ren and Z. B. Cheng, On high-order delay differential equation,, Comput. Math. Appl., 57 (2009), 324.
doi: 10.1016/j.camwa.2008.10.071. |
[12] |
J. L. Ren and Z. B. Cheng, Periodic solutions for generalized high-order neutral differential equation in the critical case,, Nonlinear Anal., 71 (2009), 6182.
doi: 10.1016/j.na.2009.06.011. |
[13] |
K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equation,, J. Math. Anal. Appl., 326 (2007), 1161.
doi: 10.1016/j.jmaa.2006.03.078. |
[14] |
J. R. Ward, Asymptotic conditions for periodic solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 81 (1981), 415.
doi: 10.2307/2043477. |
[15] |
M. R. Zhang, An abstract result on asympotitically positively homogeneous differential equations,, J. Math. Anal. Appl., 209 (1997), 291.
doi: 10.1006/jmaa.1997.5383. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[3] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[4] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[5] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[6] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[7] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[8] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[9] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[10] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[11] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[12] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[13] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[14] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[15] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[16] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[17] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[18] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[19] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[20] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]