-
Previous Article
Application of the subharmonic Melnikov method to piecewise-smooth systems
- DCDS Home
- This Issue
-
Next Article
Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations
Pushed traveling fronts in monostable equations with monotone delayed reaction
1. | Department of Differential Equations, National Technical University, Kyiv, Ukraine |
2. | Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile |
3. | Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca |
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited),, Math. Ann., 354 (2012), 73. Google Scholar |
[2] |
R. D. Benguria and M. C. Depassier, Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation,, Comm. Math. Phys., 175 (1996), 221.
|
[3] |
H. Berestycki and L. Nirenberg, Traveling waves in cylinders,, Ann. Inst. H. Poincare Anal. Non. Lineaire, 9 (1992), 497.
|
[4] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.
|
[5] |
A. Boumenir and V.M. Nguyen, Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations,, J. Differential Equations, 244 (2008), 1551.
|
[6] |
A. Calamai, C. Marcelli and F. Papalini, A general approach for front-propagation in functional reaction-diffusion equations,, J. Dynam. Differential Equations, 21 (2009), 567.
|
[7] |
J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.
|
[8] |
X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.
|
[9] |
X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.
|
[10] |
J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation,, Ann. Mat. Pura Appl., 185 (2006), 461.
|
[11] |
J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080.
|
[12] |
O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721.
|
[13] |
U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Phys. D, 146 (2000), 1.
|
[14] |
J. Fang, J. Wei and X.-Q. Zhao, Uniqueness of traveling waves for nonlocal lattice equations,, Proc. Amer. Math. Soc., 139 (2011), 1361.
|
[15] |
J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, , J. Differential Equations, 248 (2010), 2199.
|
[16] |
T. Faria and S. Trofimchuk, Non-monotone traveling waves in a single species reaction,-diffusion equation with delay,, J. Differential Equations, 228 (2006), 357.
|
[17] |
B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhauser, (2004).
|
[18] |
C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation,, preprint , (). Google Scholar |
[19] |
K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.
|
[20] |
A. Kolmogorov, I. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem,, Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh., 1 (1937), 1. Google Scholar |
[21] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.
|
[22] |
X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Functional Anal., 259 (2010), 857.
|
[23] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294.
|
[24] |
S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations,, J. Differential Equations, 237 (2007), 259.
|
[25] |
S. Ma, X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.
|
[26] |
J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1.
|
[27] |
M. Mei, Ch. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 233.
|
[28] |
G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.
|
[29] |
F. Rothe, Convergence to pushed fronts, , Rocky Mountain J. Math., 11 (1981), 617.
|
[30] |
K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
|
[31] |
A.N. Stokes, On two types of moving front in quasilinear diffusion,, Math. Biosciences, 31 (1976), 307.
|
[32] |
K. Schumacher, Travelling-front solutions for integro-differential equations. I ,, J. Reine Angew. Math., 316 (1980), 54.
|
[33] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Traveling wavefronts for a model of the Belousov-Zhabotinskii reaction,, preprint , (). Google Scholar |
[34] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, preprint , (). Google Scholar |
[35] |
E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307.
|
[36] |
E. Trofimchuk, P. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation,, J. Differential Equations, 246 (2009), 1422.
|
[37] |
E. Trofimchuk and S. Trofimchuk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst., 20 (2008), 407.
|
[38] |
Z.-C. Wang, W.T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.
|
[39] |
H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.
|
[40] |
P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.
|
[41] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Differential Equations, 13 (2001), 651.
|
[42] |
J. Xin}, Front propagation in heterogeneous media,, SIAM Review, 42 (2000), 161.
|
[43] |
Z.-X. Yu, Uniqueness of critical traveling waves for nonlocal lattice equations with delays,, Proc. Amer. Math. Soc., 140 (2012), 3853.
|
[44] |
B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46.
|
show all references
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited),, Math. Ann., 354 (2012), 73. Google Scholar |
[2] |
R. D. Benguria and M. C. Depassier, Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation,, Comm. Math. Phys., 175 (1996), 221.
|
[3] |
H. Berestycki and L. Nirenberg, Traveling waves in cylinders,, Ann. Inst. H. Poincare Anal. Non. Lineaire, 9 (1992), 497.
|
[4] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.
|
[5] |
A. Boumenir and V.M. Nguyen, Perron theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations,, J. Differential Equations, 244 (2008), 1551.
|
[6] |
A. Calamai, C. Marcelli and F. Papalini, A general approach for front-propagation in functional reaction-diffusion equations,, J. Dynam. Differential Equations, 21 (2009), 567.
|
[7] |
J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.
|
[8] |
X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.
|
[9] |
X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.
|
[10] |
J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation,, Ann. Mat. Pura Appl., 185 (2006), 461.
|
[11] |
J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity,, J. Differential Equations, 244 (2008), 3080.
|
[12] |
O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721.
|
[13] |
U. Ebert and W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts,, Phys. D, 146 (2000), 1.
|
[14] |
J. Fang, J. Wei and X.-Q. Zhao, Uniqueness of traveling waves for nonlocal lattice equations,, Proc. Amer. Math. Soc., 139 (2011), 1361.
|
[15] |
J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, , J. Differential Equations, 248 (2010), 2199.
|
[16] |
T. Faria and S. Trofimchuk, Non-monotone traveling waves in a single species reaction,-diffusion equation with delay,, J. Differential Equations, 228 (2006), 357.
|
[17] |
B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,", Birkhauser, (2004).
|
[18] |
C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation,, preprint , (). Google Scholar |
[19] |
K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.
|
[20] |
A. Kolmogorov, I. Petrovskii and N. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem,, Byul. Mosk. Gos. Univ. Ser. A Mat. Mekh., 1 (1937), 1. Google Scholar |
[21] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.
|
[22] |
X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Functional Anal., 259 (2010), 857.
|
[23] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294.
|
[24] |
S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations,, J. Differential Equations, 237 (2007), 259.
|
[25] |
S. Ma, X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.
|
[26] |
J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type,, J. Dynam. Differential Equations, 11 (1999), 1.
|
[27] |
M. Mei, Ch. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 233.
|
[28] |
G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.
|
[29] |
F. Rothe, Convergence to pushed fronts, , Rocky Mountain J. Math., 11 (1981), 617.
|
[30] |
K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
|
[31] |
A.N. Stokes, On two types of moving front in quasilinear diffusion,, Math. Biosciences, 31 (1976), 307.
|
[32] |
K. Schumacher, Travelling-front solutions for integro-differential equations. I ,, J. Reine Angew. Math., 316 (1980), 54.
|
[33] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Traveling wavefronts for a model of the Belousov-Zhabotinskii reaction,, preprint , (). Google Scholar |
[34] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, preprint , (). Google Scholar |
[35] |
E. Trofimchuk, V. Tkachenko and S. Trofimchuk, Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay,, J. Differential Equations, 245 (2008), 2307.
|
[36] |
E. Trofimchuk, P. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation,, J. Differential Equations, 246 (2009), 1422.
|
[37] |
E. Trofimchuk and S. Trofimchuk, Admissible wavefront speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst., 20 (2008), 407.
|
[38] |
Z.-C. Wang, W.T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.
|
[39] |
H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.
|
[40] |
P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.
|
[41] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Differential Equations, 13 (2001), 651.
|
[42] |
J. Xin}, Front propagation in heterogeneous media,, SIAM Review, 42 (2000), 161.
|
[43] |
Z.-X. Yu, Uniqueness of critical traveling waves for nonlocal lattice equations with delays,, Proc. Amer. Math. Soc., 140 (2012), 3853.
|
[44] |
B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46.
|
[1] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[2] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[6] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[9] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[10] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[11] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[14] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[15] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[16] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[17] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[18] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[19] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[20] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]