May  2013, 33(5): 2211-2219. doi: 10.3934/dcds.2013.33.2211

Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China

Received  December 2011 Revised  March 2012 Published  December 2012

We study the blowup criterion of smooth solution to the Oldroyd model. Let $(u(t,x), F(t,x)$ be a smooth solution in $[0,T)$, it is shown that the solution $(u(t,x), F(t,x)$ does not appear breakdown until $t=T$ provided $∇ u(t,x)∈ L^1([0,T]; L^∞(\mathbb{R}^n))$ for $n=2,3$.
Citation: Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211
References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[2]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid,, SIAM J. Math. Anal., 33 (2001), 84.  doi: 10.1137/S0036141099359317.  Google Scholar

[3]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, ().   Google Scholar

[4]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[5]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[6]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[7]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[8]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[9]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Univ. Press, (2002).   Google Scholar

[10]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", $2^{nd}$ edition, (2004).   Google Scholar

[11]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Univ. Press, (1971).   Google Scholar

[12]

L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$,, Chin. Phys. Lett., 28 (2011), 1.   Google Scholar

show all references

References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[2]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid,, SIAM J. Math. Anal., 33 (2001), 84.  doi: 10.1137/S0036141099359317.  Google Scholar

[3]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, ().   Google Scholar

[4]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[5]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[6]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[7]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[8]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[9]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Univ. Press, (2002).   Google Scholar

[10]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", $2^{nd}$ edition, (2004).   Google Scholar

[11]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Univ. Press, (1971).   Google Scholar

[12]

L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$,, Chin. Phys. Lett., 28 (2011), 1.   Google Scholar

[1]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[2]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[6]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[7]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[13]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[20]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]