-
Previous Article
Existence of multidimensional non-isothermal phase transitions in a steady van der Waals flow
- DCDS Home
- This Issue
-
Next Article
Application of the subharmonic Melnikov method to piecewise-smooth systems
Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow
1. | School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China |
References:
[1] |
J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.
|
[2] |
J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid,, SIAM J. Math. Anal., 33 (2001), 84.
doi: 10.1137/S0036141099359317. |
[3] |
X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, (). Google Scholar |
[4] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.
doi: 10.1002/cpa.3160410704. |
[5] |
Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.
doi: 10.1007/s00205-007-0089-x. |
[6] |
Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.
doi: 10.1016/j.jde.2009.07.011. |
[7] |
F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.
doi: 10.1002/cpa.20074. |
[8] |
F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.
doi: 10.1002/cpa.20219. |
[9] |
A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Univ. Press, (2002).
|
[10] |
C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", $2^{nd}$ edition, (2004). Google Scholar |
[11] |
E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Univ. Press, (1971).
|
[12] |
L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$,, Chin. Phys. Lett., 28 (2011), 1. Google Scholar |
show all references
References:
[1] |
J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.
|
[2] |
J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid,, SIAM J. Math. Anal., 33 (2001), 84.
doi: 10.1137/S0036141099359317. |
[3] |
X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, (). Google Scholar |
[4] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.
doi: 10.1002/cpa.3160410704. |
[5] |
Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Rational Mech. Anal., 188 (2008), 371.
doi: 10.1007/s00205-007-0089-x. |
[6] |
Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models,, J. Differential Equations, 248 (2010), 328.
doi: 10.1016/j.jde.2009.07.011. |
[7] |
F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.
doi: 10.1002/cpa.20074. |
[8] |
F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.
doi: 10.1002/cpa.20219. |
[9] |
A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Univ. Press, (2002).
|
[10] |
C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", $2^{nd}$ edition, (2004). Google Scholar |
[11] |
E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Univ. Press, (1971).
|
[12] |
L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$,, Chin. Phys. Lett., 28 (2011), 1. Google Scholar |
[1] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[2] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[3] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[4] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[5] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[6] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[7] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[8] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[9] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[10] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[11] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[12] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[13] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[14] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[15] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[16] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[19] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[20] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]