January  2013, 33(1): 225-237. doi: 10.3934/dcds.2013.33.225

On the principal eigenvalues of some elliptic problems with large drift

1. 

FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina, Argentina

2. 

Departement de Mathematique, C.P. 214, Universite Libre de Bruxelles, 1050 Bruxelles, Belgium

Received  July 2011 Revised  October 2011 Published  September 2012

This paper is concerned with non-selfadjoint elliptic problems having a principal part in divergence form and involving an indefinite weight. We study the asymptotic behavior of the principal eigenvalues when the first order term (drift term) becomes larger and larger. Several of our results also apply to elliptic operators in general form.
Citation: Tomas Godoy, Jean-Pierre Gossez, Sofia Paczka. On the principal eigenvalues of some elliptic problems with large drift. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 225-237. doi: 10.3934/dcds.2013.33.225
References:
[1]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253 (2005), 451-480. doi: 10.1007/s00220-004-1201-9.

[2]

H. Berestycki, L. Nirenberg and S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92. doi: 10.1002/cpa.3160470105.

[3]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658. doi: 10.1512/iumj.2008.57.3204.

[4]

E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces, Diff. Int. Equat., 9 (1996), 437-446.

[5]

A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivative II, Indiana Univ. Math. J., 23 (1974), 991-1011.

[6]

M. Donsker and S. Varadhan, On the principal eigenvalue of second order differential operators, Comm. Pure Appl. Math., 29 (1976), 595-621. doi: 10.1002/cpa.3160290606.

[7]

J. Fleckinger, J. Hernandez and F. de Thelin, Existence of multiple eigenvalues for some indefinite linear eigenvalue problems, Bolletino U. M. I., 7 (2004), 159-188.

[8]

A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivative, Indiana Univ. Math. J., 22 (1973), 1005-1015.

[9]

T. Godoy, J. P. Gossez and S. Paczka, A minimax formula for principal eigenvalues and application to an antimaximum principle, Calculus of Variations and Partial Differential Equations, 21 (2004), 85-111. doi: 10.1007/s00526-003-0249-2.

[10]

T. Godoy, J. P. Gossez and S. Paczka, A minimax formula for the principal eigenvalues of Dirichlet problems and its applications, 2006 International Conference in honor of JacquelineFleckinger, Electronic Journal of Differential Equations, Conference, 15 (2007), 137-154.

[11]

T. Godoy, J. P. Gossez and S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Annali di Matematica Pura ed Applicata, 189 (2009), 497-521. doi: 10.1007/s10231-009-0120-y.

[12]

P. Hess, "Periodic-parabolic Boundary Value Problems and Positivity," Pitman, 1991.

[13]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Part. Diff. Equat., 5 (1980), 999-1030. doi: 10.1080/03605308008820162.

[14]

C. Holland, A minimum principle for the principal eigenvalue for second order linear elliptic equation with natural boundary condition, Comm. Pure Appl. Math., 31 (1978), 509-519. doi: 10.1002/cpa.3160310406.

[15]

T. Kato, Superconvexity of the spectral radius, and convexity of the spectral bound and the type, Math. Z., 180 (1982), 265-273. doi: 10.1007/BF01318910.

[16]

J. Lopez Gomez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Diff. Equat., 127 (1996), 263-294. doi: 10.1006/jdeq.1996.0070.

[17]

S. Paczka, A Neumann periodic parabolic eigenvalue problem with continuous weight, Rendiconti del Seminario Matematico dellUniversita e Politecnico di Torino, 54 (1996), 67-74

[18]

S. Timbo, M. Kimura and H. Notsu, Exponential decay phenomenon of the principal eigenvalue of an elliptic operator with a large drift term of gradient type, Asymptotic Analysis, 65 (2009), 103-123.

show all references

References:
[1]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253 (2005), 451-480. doi: 10.1007/s00220-004-1201-9.

[2]

H. Berestycki, L. Nirenberg and S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92. doi: 10.1002/cpa.3160470105.

[3]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658. doi: 10.1512/iumj.2008.57.3204.

[4]

E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces, Diff. Int. Equat., 9 (1996), 437-446.

[5]

A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivative II, Indiana Univ. Math. J., 23 (1974), 991-1011.

[6]

M. Donsker and S. Varadhan, On the principal eigenvalue of second order differential operators, Comm. Pure Appl. Math., 29 (1976), 595-621. doi: 10.1002/cpa.3160290606.

[7]

J. Fleckinger, J. Hernandez and F. de Thelin, Existence of multiple eigenvalues for some indefinite linear eigenvalue problems, Bolletino U. M. I., 7 (2004), 159-188.

[8]

A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivative, Indiana Univ. Math. J., 22 (1973), 1005-1015.

[9]

T. Godoy, J. P. Gossez and S. Paczka, A minimax formula for principal eigenvalues and application to an antimaximum principle, Calculus of Variations and Partial Differential Equations, 21 (2004), 85-111. doi: 10.1007/s00526-003-0249-2.

[10]

T. Godoy, J. P. Gossez and S. Paczka, A minimax formula for the principal eigenvalues of Dirichlet problems and its applications, 2006 International Conference in honor of JacquelineFleckinger, Electronic Journal of Differential Equations, Conference, 15 (2007), 137-154.

[11]

T. Godoy, J. P. Gossez and S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Annali di Matematica Pura ed Applicata, 189 (2009), 497-521. doi: 10.1007/s10231-009-0120-y.

[12]

P. Hess, "Periodic-parabolic Boundary Value Problems and Positivity," Pitman, 1991.

[13]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Part. Diff. Equat., 5 (1980), 999-1030. doi: 10.1080/03605308008820162.

[14]

C. Holland, A minimum principle for the principal eigenvalue for second order linear elliptic equation with natural boundary condition, Comm. Pure Appl. Math., 31 (1978), 509-519. doi: 10.1002/cpa.3160310406.

[15]

T. Kato, Superconvexity of the spectral radius, and convexity of the spectral bound and the type, Math. Z., 180 (1982), 265-273. doi: 10.1007/BF01318910.

[16]

J. Lopez Gomez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Diff. Equat., 127 (1996), 263-294. doi: 10.1006/jdeq.1996.0070.

[17]

S. Paczka, A Neumann periodic parabolic eigenvalue problem with continuous weight, Rendiconti del Seminario Matematico dellUniversita e Politecnico di Torino, 54 (1996), 67-74

[18]

S. Timbo, M. Kimura and H. Notsu, Exponential decay phenomenon of the principal eigenvalue of an elliptic operator with a large drift term of gradient type, Asymptotic Analysis, 65 (2009), 103-123.

[1]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[2]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[3]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[4]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[5]

Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333

[6]

Haitao Yang. On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^n$. Communications on Pure and Applied Analysis, 2005, 4 (1) : 187-198. doi: 10.3934/cpaa.2005.4.197

[7]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[8]

Zhiyuan Wen, Meirong Zhang. On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3257-3274. doi: 10.3934/dcdsb.2020061

[9]

Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158

[10]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[11]

Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028

[12]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119

[14]

Bojing Shi. $ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 537-553. doi: 10.3934/dcds.2021127

[15]

Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 677-685. doi: 10.3934/naco.2021012

[16]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control and Related Fields, 2022, 12 (1) : 115-146. doi: 10.3934/mcrf.2021004

[17]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[18]

Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102

[19]

Tohru Wakasa, Shoji Yotsutani. Asymptotic profiles of eigenfunctions for some 1-dimensional linearized eigenvalue problems. Communications on Pure and Applied Analysis, 2010, 9 (2) : 539-561. doi: 10.3934/cpaa.2010.9.539

[20]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]