-
Previous Article
Global dynamics of the nonradial energy-critical wave equation above the ground state energy
- DCDS Home
- This Issue
-
Next Article
On the stability of standing waves of Klein-Gordon equations in a semiclassical regime
Rényi entropy and recurrence
1. | Mathematics Department, USC, Los Angeles, CA 90089-1113, United States |
References:
[1] |
K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging, Journal of the Acoustical Society of Americal, 125 (2009), 3141-3145. |
[2] |
K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , ().
|
[3] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., ().
|
[4] |
V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.
doi: 10.4064/fm178-2-3. |
[5] |
N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynamical System, 39 (2010), 159-179.
doi: 10.1017/S0143385709000030. |
[6] |
J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , ().
|
[7] |
R. Mañé, "Ergodic Theory and Differential Dynamics," Springer, 1985. |
[8] |
D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inf. Theory, 39 (1993), 78-83.
doi: 10.1109/18.179344. |
[9] |
D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields, IEEE Trans. Inf. Theory, 48 (1993), 1694-1697.
doi: 10.1109/TIT.2002.1003848. |
[10] |
A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547-561. |
[11] |
F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach, Nonlinearity, 4 (1998), 771-782.
doi: 10.1088/0951-7715/11/4/001. |
show all references
References:
[1] |
K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging, Journal of the Acoustical Society of Americal, 125 (2009), 3141-3145. |
[2] |
K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , ().
|
[3] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., ().
|
[4] |
V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.
doi: 10.4064/fm178-2-3. |
[5] |
N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynamical System, 39 (2010), 159-179.
doi: 10.1017/S0143385709000030. |
[6] |
J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , ().
|
[7] |
R. Mañé, "Ergodic Theory and Differential Dynamics," Springer, 1985. |
[8] |
D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inf. Theory, 39 (1993), 78-83.
doi: 10.1109/18.179344. |
[9] |
D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields, IEEE Trans. Inf. Theory, 48 (1993), 1694-1697.
doi: 10.1109/TIT.2002.1003848. |
[10] |
A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547-561. |
[11] |
F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach, Nonlinearity, 4 (1998), 771-782.
doi: 10.1088/0951-7715/11/4/001. |
[1] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[2] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[3] |
Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339 |
[4] |
Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237 |
[5] |
Yunmei Chen, Jiangli Shi, Murali Rao, Jin-Seop Lee. Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure. Inverse Problems and Imaging, 2015, 9 (1) : 79-103. doi: 10.3934/ipi.2015.9.79 |
[6] |
Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170 |
[7] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[8] |
Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399 |
[9] |
Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557 |
[10] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[11] |
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011 |
[12] |
Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163 |
[13] |
Arnaud Goullet, Ian Glasgow, Nadine Aubry. Dynamics of microfluidic mixing using time pulsing. Conference Publications, 2005, 2005 (Special) : 327-336. doi: 10.3934/proc.2005.2005.327 |
[14] |
Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721 |
[15] |
Daniel Glasscock, Andreas Koutsogiannis, Florian Karl Richter. Multiplicative combinatorial properties of return time sets in minimal dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5891-5921. doi: 10.3934/dcds.2019258 |
[16] |
Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42. |
[17] |
Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 |
[18] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[19] |
Leandro Arosio, Anna Miriam Benini, John Erik Fornæss, Han Peters. Dynamics of transcendental Hénon maps III: Infinite entropy. Journal of Modern Dynamics, 2021, 17: 465-479. doi: 10.3934/jmd.2021016 |
[20] |
Jérôme Buzzi, Véronique Maume-Deschamps. Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 639-656. doi: 10.3934/dcds.2005.12.639 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]