Advanced Search
Article Contents
Article Contents

Rényi entropy and recurrence

Abstract Related Papers Cited by
  • This paper studies the relationship between the return time $\tau_n$ and the Rényi Entropy Function of order $s$, $R(s)$. For a dynamical system with an invariant $\alpha$-mixing measure $\mu$ and a measurable partition, we consider the sum $W$ of measures of cylinders along orbit segments of length $\tau_n$ and relate that growth/decay rate to the R$\acute{\textrm{e}}$nyi Entropy. The key strategy is to introduce the hitting number $\nu_x(A) = | \{1 \leq i \leq \tau_n(x) : T^i(x) \in A\}|$, the number of times that $x$ hits the set $A$ when $x$ travels along its orbit of length $\tau_n(x)$, and write $W=\sum \nu_x(A) \mu(A)^s$, where the sum is taken over the $n$-cylinders. Then we show that $\nu_x(A) \approx \exp(n h_{\mu}) \mu(A)$ for most $n$-cylinders $A$. Hence $W \approx \exp(nh_{\mu}) \sum \mu(A)^{1+s}$, which relates $\tau_n(x)$ to $R(s)$, as the sum $\sum \mu(A)^{1+s} \approx \exp(-nsR(s))$.
    Mathematics Subject Classification: Primary: 37A50, 28D05; Secondary: 60E10.


    \begin{equation} \\ \end{equation}
  • [1]

    K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging, Journal of the Acoustical Society of Americal, 125 (2009), 3141-3145.


    K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture," 2008. Available from: http://www.math.wustl.edu/~mccarthy/public_papers/RenyiEntropy.pdf.


    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Springer Lecture Notes in Mathematics 470.


    V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.doi: 10.4064/fm178-2-3.


    N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynamical System, 39 (2010), 159-179.doi: 10.1017/S0143385709000030.


    J. Baez, "Rényi Entropy and Free Energy," 2011. Available from: http://math.ucr.edu/home/baez/renyi.pdf.


    R. Mañé, "Ergodic Theory and Differential Dynamics," Springer, 1985.


    D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inf. Theory, 39 (1993), 78-83.doi: 10.1109/18.179344.


    D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields, IEEE Trans. Inf. Theory, 48 (1993), 1694-1697.doi: 10.1109/TIT.2002.1003848.


    A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547-561.


    F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach, Nonlinearity, 4 (1998), 771-782.doi: 10.1088/0951-7715/11/4/001.

  • 加载中

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint