\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rényi entropy and recurrence

Abstract Related Papers Cited by
  • This paper studies the relationship between the return time $\tau_n$ and the Rényi Entropy Function of order $s$, $R(s)$. For a dynamical system with an invariant $\alpha$-mixing measure $\mu$ and a measurable partition, we consider the sum $W$ of measures of cylinders along orbit segments of length $\tau_n$ and relate that growth/decay rate to the R$\acute{\textrm{e}}$nyi Entropy. The key strategy is to introduce the hitting number $\nu_x(A) = | \{1 \leq i \leq \tau_n(x) : T^i(x) \in A\}|$, the number of times that $x$ hits the set $A$ when $x$ travels along its orbit of length $\tau_n(x)$, and write $W=\sum \nu_x(A) \mu(A)^s$, where the sum is taken over the $n$-cylinders. Then we show that $\nu_x(A) \approx \exp(n h_{\mu}) \mu(A)$ for most $n$-cylinders $A$. Hence $W \approx \exp(nh_{\mu}) \sum \mu(A)^{1+s}$, which relates $\tau_n(x)$ to $R(s)$, as the sum $\sum \mu(A)^{1+s} \approx \exp(-nsR(s))$.
    Mathematics Subject Classification: Primary: 37A50, 28D05; Secondary: 60E10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging, Journal of the Acoustical Society of Americal, 125 (2009), 3141-3145.

    [2]

    K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture," 2008. Available from: http://www.math.wustl.edu/~mccarthy/public_papers/RenyiEntropy.pdf.

    [3]

    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Springer Lecture Notes in Mathematics 470.

    [4]

    V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.doi: 10.4064/fm178-2-3.

    [5]

    N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynamical System, 39 (2010), 159-179.doi: 10.1017/S0143385709000030.

    [6]

    J. Baez, "Rényi Entropy and Free Energy," 2011. Available from: http://math.ucr.edu/home/baez/renyi.pdf.

    [7]

    R. Mañé, "Ergodic Theory and Differential Dynamics," Springer, 1985.

    [8]

    D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inf. Theory, 39 (1993), 78-83.doi: 10.1109/18.179344.

    [9]

    D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields, IEEE Trans. Inf. Theory, 48 (1993), 1694-1697.doi: 10.1109/TIT.2002.1003848.

    [10]

    A. Rényi, On measures of entropy and information, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547-561.

    [11]

    F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach, Nonlinearity, 4 (1998), 771-782.doi: 10.1088/0951-7715/11/4/001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return