June  2013, 33(6): 2423-2450. doi: 10.3934/dcds.2013.33.2423

Global dynamics of the nonradial energy-critical wave equation above the ground state energy

1. 

Bâtiment des Mathématiques, EPFL, Station 8, CH-1015 Lausanne, Switzerland

2. 

Department of Mathematics, Kyoto University, Kyoto 606-8502

3. 

Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, IL 60615, United States

Received  January 2012 Revised  August 2012 Published  December 2012

In this paper we establish the existence of certain classes of solutions to the energy critical nonlinear wave equation in dimensions $3$ and $5$ assuming that the energy exceeds the ground state energy only by a small amount. No radial assumption is made. We find that there exist four sets in $\dot H^{1}\times L^{2}$ with nonempty interiors which correspond to all possible combinations of finite-time blowup on the one hand, and global existence and scattering to a free wave, on the other hand, as $t → ±∞$.
Citation: Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423
References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.

[3]

T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation, J. Eur. Math. Soc., 13 (2011), 533-599. doi: 10.4171/JEMS/261.

[4]

T. Duyckaerts, C. Kenig and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case,, preprint, ().  doi: 10.4171/JEMS/336.

[5]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, preprint, ().  doi: 10.1007/s00039-012-0174-7.

[6]

T. Duyckaerts, C. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation,, preprint, (). 

[7]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840. doi: 10.1007/s00039-009-0707-x.

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, (2008).

[9]

J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal., 110 (1992), 96-130. doi: 10.1016/0022-1236(92)90044-J.

[10]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.

[11]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[13]

J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation,, to appear in Amer. Journal Math., (). 

[14]

J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, Amer. J. Math., 129 (2007), 843-913. doi: 10.1353/ajm.2007.0021.

[15]

J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^1(\mathbbR^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53. doi: 10.1215/00127094-2009-005.

[16]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201. doi: 10.4171/RMI/6.

[17]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. doi: 10.1155/S1073792898000270.

[18]

K. Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power,, Internat. Math. Res. Notices, 1999 (): 31.  doi: 10.1155/S1073792899000021.

[19]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, Journal Diff. Eq., 250 (2011), 2299-2233. doi: 10.1016/j.jde.2010.10.027.

[20]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. and PDE, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.

[21]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Rational Mech. Analysis, 203 (2012), 809-851. doi: 10.1007/s00205-011-0462-7.

[22]

K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations," Zürich Lectures in Advanced Mathematics, EMS, 2011. doi: 10.4171/095.

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.

[24]

J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes, AMS, 1998.

show all references

References:
[1]

H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.

[3]

T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation, J. Eur. Math. Soc., 13 (2011), 533-599. doi: 10.4171/JEMS/261.

[4]

T. Duyckaerts, C. Kenig and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case,, preprint, ().  doi: 10.4171/JEMS/336.

[5]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, preprint, ().  doi: 10.1007/s00039-012-0174-7.

[6]

T. Duyckaerts, C. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation,, preprint, (). 

[7]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840. doi: 10.1007/s00039-009-0707-x.

[8]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, (2008).

[9]

J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal., 110 (1992), 96-130. doi: 10.1016/0022-1236(92)90044-J.

[10]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.

[11]

C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[12]

C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.

[13]

J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation,, to appear in Amer. Journal Math., (). 

[14]

J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, Amer. J. Math., 129 (2007), 843-913. doi: 10.1353/ajm.2007.0021.

[15]

J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^1(\mathbbR^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53. doi: 10.1215/00127094-2009-005.

[16]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201. doi: 10.4171/RMI/6.

[17]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. doi: 10.1155/S1073792898000270.

[18]

K. Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power,, Internat. Math. Res. Notices, 1999 (): 31.  doi: 10.1155/S1073792899000021.

[19]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, Journal Diff. Eq., 250 (2011), 2299-2233. doi: 10.1016/j.jde.2010.10.027.

[20]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. and PDE, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.

[21]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Rational Mech. Analysis, 203 (2012), 809-851. doi: 10.1007/s00205-011-0462-7.

[22]

K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations," Zürich Lectures in Advanced Mathematics, EMS, 2011. doi: 10.4171/095.

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.

[24]

J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes, AMS, 1998.

[1]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[2]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[3]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[4]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[5]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[6]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[7]

Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115

[8]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[9]

Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759

[10]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[11]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[12]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[13]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[14]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[15]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[16]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4545-4566. doi: 10.3934/dcds.2021048

[17]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems and Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[18]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[19]

Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[20]

Alexander M. Krasnosel'skii, Edward O'Grady, Alexei Pokrovskii, Dmitrii I. Rachinskii. Periodic canard trajectories with multiple segments following the unstable part of critical manifold. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 467-482. doi: 10.3934/dcdsb.2013.18.467

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (15)

[Back to Top]