Citation: |
[1] |
H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175. |
[2] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.doi: 10.1002/cpa.3160420304. |
[3] |
T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation, J. Eur. Math. Soc., 13 (2011), 533-599.doi: 10.4171/JEMS/261. |
[4] |
T. Duyckaerts, C. Kenig and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case, preprint, arXiv:1003.0625, to appear in JEMS. doi: 10.4171/JEMS/336. |
[5] |
T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, preprint, arXiv:1201.4986, to appear in GAFA. doi: 10.1007/s00039-012-0174-7. |
[6] |
T. Duyckaerts, C. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, preprint, arXiv:1204.0031. |
[7] |
T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.doi: 10.1007/s00039-009-0707-x. |
[8] |
T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, (2008). |
[9] |
J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal., 110 (1992), 96-130.doi: 10.1016/0022-1236(92)90044-J. |
[10] |
S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.doi: 10.2140/apde.2011.4.405. |
[11] |
C. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: 10.1007/s00222-006-0011-4. |
[12] |
C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.doi: 10.1007/s11511-008-0031-6. |
[13] |
J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, to appear in Amer. Journal Math. |
[14] |
J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, Amer. J. Math., 129 (2007), 843-913.doi: 10.1353/ajm.2007.0021. |
[15] |
J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^1(\mathbbR^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.doi: 10.1215/00127094-2009-005. |
[16] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201.doi: 10.4171/RMI/6. |
[17] |
F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425.doi: 10.1155/S1073792898000270. |
[18] |
K. Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power, Internat. Math. Res. Notices, 1999, 31-60. doi: 10.1155/S1073792899000021. |
[19] |
K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, Journal Diff. Eq., 250 (2011), 2299-2233.doi: 10.1016/j.jde.2010.10.027. |
[20] |
K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. and PDE, 44 (2012), 1-45.doi: 10.1007/s00526-011-0424-9. |
[21] |
K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Rational Mech. Analysis, 203 (2012), 809-851.doi: 10.1007/s00205-011-0462-7. |
[22] |
K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations," Zürich Lectures in Advanced Mathematics, EMS, 2011.doi: 10.4171/095. |
[23] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303. |
[24] |
J. Shatah and M. Struwe, "Geometric Wave Equations," Courant Lecture Notes, AMS, 1998. |