Citation: |
[1] |
N. Bournaveas, Low regularity solutions of the relativistic Chern-Simons-Higgs theory in the Lorentz gauge, Electronic Journal of Differential Equations, (2009), 1-10. |
[2] |
D. Chae and K. Choe, Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory, Nonlinearity, 15 (2002), 747-758.doi: 10.1088/0951-7715/15/3/314. |
[3] |
P. D'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, in "Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena" Contemporary Mathematics, 526, Amer. Math. Soc., Providence, RI, (2010), 125-150.doi: 10.1090/conm/526/10379. |
[4] |
J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge, Commun. Math. Phys., 82 (1981), 1-28. |
[5] |
J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990), 2230-2233.doi: 10.1103/PhysRevLett.64.2230. |
[6] |
H. Huh, Local and global solutions of the Chern-Simons-Higgs system, Journal of Functional Analysis, 242 (2007), 526-549.doi: 10.1016/j.jfa.2006.09.009. |
[7] |
H. Huh, Towards the Chern-Simons-Higgs equation with finite energy, Discrete and Continuous Dynamical Systems, 30 (2011), 1145-1159.doi: 10.3934/dcds.2011.30.1145. |
[8] |
R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237.doi: 10.1103/PhysRevLett.64.2234. |
[9] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44doi: 10.1215/S0012-7094-94-07402-4. |
[10] |
S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Communications in Partial Differential Equations, 35 (2010), 1029-1057.doi: 10.1080/03605301003717100. |
[11] |
J. Yuan, Local well-posedness of Chern-Simons-Higgs system in the Lorentz gauge, Journal of Mathematical Physics, 52 (2011), 103706.doi: 10.1063/1.3645365. |