Advanced Search
Article Contents
Article Contents

On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems

Abstract Related Papers Cited by
  • In this paper we consider two-dimensional nonlinear quasi-periodic system with small perturbations. Assume that the unperturbed system has a hyperbolic-type degenerate equilibrium point and the frequency satisfies the Diophantine conditions. Using the KAM iteration we prove that for sufficiently small perturbations, the system can be reduced by a nonlinear quasi-periodic transformation to a suitable normal form with an equilibrium point at the origin. Hence, for the system we can obtain a small quasi-periodic solution.
    Mathematics Subject Classification: Primary: 34J40, 34C27; Secondary: 34E20.


    \begin{equation} \\ \end{equation}
  • [1]

    H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 83 (1990), viii+175.


    H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems," Lecture Notes in Mathematics, 1645, 1996.


    C. Q. Cheng, Lower diemsional invariant tori in the regions of instability of nearly integrable hamiltonian systems, Commun. Math. Phys., 203 (1999), 385-419.doi: 10.1007/s002200050618.


    L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001).


    S. M. Graff, On the conservation of hyperbolic invariant tori for hamiltonian systems, J. Differential Equations, 15 (1974), 1-69.


    H. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, 20 (2008), 831-866.doi: 10.1007/s10884-008-9113-6.


    A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124.doi: 10.1016/0022-0396(92)90107-X.


    A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.doi: 10.1137/S0036141094276913.


    J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1976), 136-176.


    J. Pöschel, On elliptic lower dimensional tori in hamiltonian systems, Math. Z., 202 (1989), 559-608.doi: 10.1007/BF01221590.


    W. Rudin, "Real and Complex Analysis," Third Edition, McGraw-Hill Compnies, Inc., 2003.


    Junxiang Xu and Qin Zheng, On the reducibility of linear differential equations with quasi-periodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451.doi: 10.1090/S0002-9939-98-04523-7.


    Junxiang Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems, Proc. Amer. Math. Soc., 135 (2007), 805-814.doi: 10.1090/S0002-9939-06-08529-7.


    Junxiang Xu and Shunjun Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergodic Theory and Dynamical Systems, 31 (2011), 599-611.doi: 10.1017/S0143385709001114.


    Junxiang Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations, 250 (2011), 551-571.doi: 10.1016/j.jde.2010.09.030.


    J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.doi: 10.1007/s002200050294.

  • 加载中

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint