-
Previous Article
DAD characterization in electromechanical cardiac models
- DCDS Home
- This Issue
-
Next Article
The local $C^1$-density of stable ergodicity
Stability of nonautonomous equations and Lyapunov functions
1. | Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa |
References:
[1] |
L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity,", Encyclopedia of Math. and Its Appl., 115 (2007).
|
[2] |
L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.
doi: 10.1007/BF02773211. |
[3] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.
doi: 10.1007/s10884-006-9026-1. |
[4] |
L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces,, J. Differential Equations, 244 (2008), 2407.
doi: 10.1016/j.jde.2008.02.028. |
[5] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).
doi: 10.1007/978-3-540-74775-8. |
[6] |
N. Bhatia and G. Szegö, "Stability Theory of Dynamical Systems,", Grundlehren der mathematischen Wissenschaften, 161 (1970).
|
[7] |
Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).
|
[8] |
W. Hahn, "Stability of Motion,", Grundlehren der mathematischen Wissenschaften, 138 (1967).
|
[9] |
J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961).
|
[10] |
A. Lyapunov, "The General Problem of the Stability of Motion,", Taylor and Francis, (1992).
|
[11] |
J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).
|
[12] |
V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197. Google Scholar |
[13] |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 145.
doi: 10.1017/S0143385700002807. |
show all references
References:
[1] |
L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity,", Encyclopedia of Math. and Its Appl., 115 (2007).
|
[2] |
L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.
doi: 10.1007/BF02773211. |
[3] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.
doi: 10.1007/s10884-006-9026-1. |
[4] |
L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces,, J. Differential Equations, 244 (2008), 2407.
doi: 10.1016/j.jde.2008.02.028. |
[5] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).
doi: 10.1007/978-3-540-74775-8. |
[6] |
N. Bhatia and G. Szegö, "Stability Theory of Dynamical Systems,", Grundlehren der mathematischen Wissenschaften, 161 (1970).
|
[7] |
Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).
|
[8] |
W. Hahn, "Stability of Motion,", Grundlehren der mathematischen Wissenschaften, 138 (1967).
|
[9] |
J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961).
|
[10] |
A. Lyapunov, "The General Problem of the Stability of Motion,", Taylor and Francis, (1992).
|
[11] |
J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).
|
[12] |
V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197. Google Scholar |
[13] |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 145.
doi: 10.1017/S0143385700002807. |
[1] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[2] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[3] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[4] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[5] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public Debt Dynamics under Ambiguity by Means of Iterated Function Systems on Density Functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]