-
Previous Article
The period set of a map from the Cantor set to itself
- DCDS Home
- This Issue
-
Next Article
Stability of nonautonomous equations and Lyapunov functions
DAD characterization in electromechanical cardiac models
1. | Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy, Italy |
References:
[1] |
C. Antzelevitch and S. Sicouri, Clinical relevance of cardiac arrhythmias generated by afterdepolarizations: Role of M cells in the generation of U waves, triggered activity and torsade de pointes,, J. Am. Coll. Cardiol., 23 (1994), 259. Google Scholar |
[2] |
J. Mészáros, D. Khananshvili and G. Hart, Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats,, Am. J. Physiol.-Heart. C., 281 (2001). Google Scholar |
[3] |
D. D. Friel, $[Ca^{2+}]_i$ oscillations in symphathetic neurons: An experimental test of a theoretical model,, Biophys. J., 68 (1995), 1752. Google Scholar |
[4] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. Google Scholar |
[5] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061. Google Scholar |
[6] |
J. Keener and J. Sneyd, "Mathematical Physiology,", Ed. Springer Verlag, (1998).
|
[7] |
P. Biscari and C. Lelli, Spike transitions in the FitzHugh-Nagumo model,, Eur. Phys. J. Plus, 126 (2011), 1. Google Scholar |
[8] |
A. Tonnelier, The McKean's caricature of the Fitzhugh-Nagumo model I. The space-clamped system,, SIAM J. Appl. Math., 63 (2002), 459.
doi: 10.1137/S0036139901393500. |
[9] |
K. Schlotthauer and D. M. Bers, Sarcoplasmic reticulum $Ca^{2+}$ release causes myocyte depolarization: Underlying mechanism and threshold for triggered action potentials,, Circ. Res., 87 (2000), 774. Google Scholar |
[10] |
Y. Xie, D. Sato, A. Garfinkel, Z. Qu and J. Weiss, So little source, so much sink: Requirements for afterdepolarizations to propagate in tissue,, Biophys. J., 99 (2010), 1408. Google Scholar |
[11] |
C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential II. Afterdepolarization, triggered activity, and potentiation,, Circ. Res., 74 (1994), 1097. Google Scholar |
[12] |
N. A. Wedge, M. S. Branicky and M. C. Cavusoglu, Proc. $26^{th}$ Int. Conf. IEEE engineering in medicine and biology society,, Ed. IEEE, (2004), 3027. Google Scholar |
[13] |
M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias,, Prog. Biophys. Mol. Bio., 85 (2004), 501. Google Scholar |
[14] |
C. Lelli, "Attraction Basin of the Equilibrium Configuration in the FitzHugh-Nagumo Model,", Acta Appl. Math., (2012).
doi: 10.1007/s10440-012-9744-9. |
[15] |
M. W. Green and B. D. Sleeman, On FitzHugh's nerve axon equations,, J. Math. Biol., 1 (1974), 153.
|
[16] |
C. Lelli, "Characterization of Delayed After-Depolarization in Extended FitzHugh-Nagumo Models,", Ph.D. Thesis, (2012). Google Scholar |
[17] |
S. P. Hastings, Single and multiple pulse waves for the FitzHugh-Nagumo equations,, SIAM J. Appl. Math., 42 (1982), 247.
doi: 10.1137/0142018. |
[18] |
Y. M. Usachev and S. A. Thayer, All-or-None $Ca^{2+}$ release from intracellular stores triggered by $Ca^{2+}$ influx through voltage-gated $Ca^{2+}$ channels in rat sensory neurons,, J. Neuosci., 17 (1997), 7404. Google Scholar |
[19] |
C. Cherubini, S. Filippi, P. Nardinocchi and L. Teresi, An electromechanical model of cardiac tissue: Constitutive issues and electrophysiological effects,, Progr. Biophys. Molec. Biol., 97 (2008), 562. Google Scholar |
[20] |
D. Ambrosi, G. Arioli, F. Nobile and A. Quarteroni, Electromechanical coupling in cardiac dynamics: The active strain approach,, SIAM J. Appl. Math., 71 (2011), 605.
doi: 10.1137/100788379. |
[21] |
J. M. Rogers and A. D. McCulloch, A Collocation-Galerkin finite element model of cardiac action potential propagation,, IEEE Trans. Biomed. Eng., 41 (1994), 743. Google Scholar |
[22] |
R. R. Aliev and A. V. Panfilov, A simple two-variable model of cardiac excitation,, Chaos Sol. Fract., 7 (1996), 293. Google Scholar |
[23] |
J. Rinzel and J. B. Keller, Traveling wave solutions of a nerve conduction equation,, Biophys. J., 13 (1973), 1313.
|
[24] |
M. E. Gurtin, E. Fried and L. Anand, "The Mechanics and Thermodynamics of Continua,", Ed. Cambridge University Press, (2010).
|
[25] |
S. M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan and D. M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual $\beta$-adrenergic responsiveness,, Circ. Res., 88 (2001), 1159. Google Scholar |
[26] |
N. P. Smith, D. P. Nickerson, E. J. Crampin and P. J. Hunter, Multiscale computational modelling of the heart,, Acta Numer., 13 (2004), 371.
doi: 10.1017/S0962492904000200. |
show all references
References:
[1] |
C. Antzelevitch and S. Sicouri, Clinical relevance of cardiac arrhythmias generated by afterdepolarizations: Role of M cells in the generation of U waves, triggered activity and torsade de pointes,, J. Am. Coll. Cardiol., 23 (1994), 259. Google Scholar |
[2] |
J. Mészáros, D. Khananshvili and G. Hart, Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats,, Am. J. Physiol.-Heart. C., 281 (2001). Google Scholar |
[3] |
D. D. Friel, $[Ca^{2+}]_i$ oscillations in symphathetic neurons: An experimental test of a theoretical model,, Biophys. J., 68 (1995), 1752. Google Scholar |
[4] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. Google Scholar |
[5] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061. Google Scholar |
[6] |
J. Keener and J. Sneyd, "Mathematical Physiology,", Ed. Springer Verlag, (1998).
|
[7] |
P. Biscari and C. Lelli, Spike transitions in the FitzHugh-Nagumo model,, Eur. Phys. J. Plus, 126 (2011), 1. Google Scholar |
[8] |
A. Tonnelier, The McKean's caricature of the Fitzhugh-Nagumo model I. The space-clamped system,, SIAM J. Appl. Math., 63 (2002), 459.
doi: 10.1137/S0036139901393500. |
[9] |
K. Schlotthauer and D. M. Bers, Sarcoplasmic reticulum $Ca^{2+}$ release causes myocyte depolarization: Underlying mechanism and threshold for triggered action potentials,, Circ. Res., 87 (2000), 774. Google Scholar |
[10] |
Y. Xie, D. Sato, A. Garfinkel, Z. Qu and J. Weiss, So little source, so much sink: Requirements for afterdepolarizations to propagate in tissue,, Biophys. J., 99 (2010), 1408. Google Scholar |
[11] |
C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential II. Afterdepolarization, triggered activity, and potentiation,, Circ. Res., 74 (1994), 1097. Google Scholar |
[12] |
N. A. Wedge, M. S. Branicky and M. C. Cavusoglu, Proc. $26^{th}$ Int. Conf. IEEE engineering in medicine and biology society,, Ed. IEEE, (2004), 3027. Google Scholar |
[13] |
M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias,, Prog. Biophys. Mol. Bio., 85 (2004), 501. Google Scholar |
[14] |
C. Lelli, "Attraction Basin of the Equilibrium Configuration in the FitzHugh-Nagumo Model,", Acta Appl. Math., (2012).
doi: 10.1007/s10440-012-9744-9. |
[15] |
M. W. Green and B. D. Sleeman, On FitzHugh's nerve axon equations,, J. Math. Biol., 1 (1974), 153.
|
[16] |
C. Lelli, "Characterization of Delayed After-Depolarization in Extended FitzHugh-Nagumo Models,", Ph.D. Thesis, (2012). Google Scholar |
[17] |
S. P. Hastings, Single and multiple pulse waves for the FitzHugh-Nagumo equations,, SIAM J. Appl. Math., 42 (1982), 247.
doi: 10.1137/0142018. |
[18] |
Y. M. Usachev and S. A. Thayer, All-or-None $Ca^{2+}$ release from intracellular stores triggered by $Ca^{2+}$ influx through voltage-gated $Ca^{2+}$ channels in rat sensory neurons,, J. Neuosci., 17 (1997), 7404. Google Scholar |
[19] |
C. Cherubini, S. Filippi, P. Nardinocchi and L. Teresi, An electromechanical model of cardiac tissue: Constitutive issues and electrophysiological effects,, Progr. Biophys. Molec. Biol., 97 (2008), 562. Google Scholar |
[20] |
D. Ambrosi, G. Arioli, F. Nobile and A. Quarteroni, Electromechanical coupling in cardiac dynamics: The active strain approach,, SIAM J. Appl. Math., 71 (2011), 605.
doi: 10.1137/100788379. |
[21] |
J. M. Rogers and A. D. McCulloch, A Collocation-Galerkin finite element model of cardiac action potential propagation,, IEEE Trans. Biomed. Eng., 41 (1994), 743. Google Scholar |
[22] |
R. R. Aliev and A. V. Panfilov, A simple two-variable model of cardiac excitation,, Chaos Sol. Fract., 7 (1996), 293. Google Scholar |
[23] |
J. Rinzel and J. B. Keller, Traveling wave solutions of a nerve conduction equation,, Biophys. J., 13 (1973), 1313.
|
[24] |
M. E. Gurtin, E. Fried and L. Anand, "The Mechanics and Thermodynamics of Continua,", Ed. Cambridge University Press, (2010).
|
[25] |
S. M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan and D. M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual $\beta$-adrenergic responsiveness,, Circ. Res., 88 (2001), 1159. Google Scholar |
[26] |
N. P. Smith, D. P. Nickerson, E. J. Crampin and P. J. Hunter, Multiscale computational modelling of the heart,, Acta Numer., 13 (2004), 371.
doi: 10.1017/S0962492904000200. |
[1] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[2] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[3] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[4] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[5] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[6] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[7] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[8] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]