-
Previous Article
Global weak solutions to a general liquid crystals system
- DCDS Home
- This Issue
-
Next Article
DAD characterization in electromechanical cardiac models
The period set of a map from the Cantor set to itself
1. | Mathematics Department, Brigham Young University, Provo, UT, 84602, United States |
2. | Mathematics Department, Southern Utah University, Cedar City, UT, 84720, United States |
3. | Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, PL-80952 Gdańsk, Poland |
References:
[1] |
Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311.
doi: 10.1142/S021812740300656X. |
[2] |
Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$,, Trans. Amer. Math. Soc., 313 (1989), 475.
doi: 10.2307/2001417. |
[3] |
Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle,, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5.
|
[4] |
Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$,, Ergodic Theory Dynam. Systems, 11 (1991), 249.
doi: 10.1017/S0143385700006131. |
[5] |
Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites,, Topology Proc., 18 (1993), 19.
|
[6] |
Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps,, in, 819 (1980), 18.
|
[7] |
A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84.
|
[8] |
Patrick Gallagher, Approximation by reduced fractions,, J. Math. Soc. Japan, 13 (1961), 342.
|
[9] |
Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space,, in, 8 (1995), 95.
|
[10] |
W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua,, Proc. Amer. Math. Soc., 107 (1989), 549.
doi: 10.2307/2047846. |
[11] |
Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics,", Ph.D thesis, (2010).
|
[12] |
Michał Misiurewicz, Periodic points of maps of degree one of a circle,, Ergodic Theory Dynamical Systems, 2 (1982), 221.
|
[13] |
E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets,, Mat. Zametki, 73 (2003), 466.
doi: 10.1023/A:1023234532265. |
[14] |
T. Pezda, Polynomial cycles in certain local domains,, Acta Arith., 66 (1994), 11.
|
[15] |
A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263.
doi: 10.1142/S0218127495000934. |
[16] |
H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$,, in, 878 (1981), 351.
|
[17] |
V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers,, Colloq. Math., 105 (2006), 197.
doi: 10.4064/cm105-2-3. |
show all references
References:
[1] |
Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311.
doi: 10.1142/S021812740300656X. |
[2] |
Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$,, Trans. Amer. Math. Soc., 313 (1989), 475.
doi: 10.2307/2001417. |
[3] |
Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle,, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5.
|
[4] |
Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$,, Ergodic Theory Dynam. Systems, 11 (1991), 249.
doi: 10.1017/S0143385700006131. |
[5] |
Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites,, Topology Proc., 18 (1993), 19.
|
[6] |
Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps,, in, 819 (1980), 18.
|
[7] |
A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84.
|
[8] |
Patrick Gallagher, Approximation by reduced fractions,, J. Math. Soc. Japan, 13 (1961), 342.
|
[9] |
Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space,, in, 8 (1995), 95.
|
[10] |
W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua,, Proc. Amer. Math. Soc., 107 (1989), 549.
doi: 10.2307/2047846. |
[11] |
Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics,", Ph.D thesis, (2010).
|
[12] |
Michał Misiurewicz, Periodic points of maps of degree one of a circle,, Ergodic Theory Dynamical Systems, 2 (1982), 221.
|
[13] |
E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets,, Mat. Zametki, 73 (2003), 466.
doi: 10.1023/A:1023234532265. |
[14] |
T. Pezda, Polynomial cycles in certain local domains,, Acta Arith., 66 (1994), 11.
|
[15] |
A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263.
doi: 10.1142/S0218127495000934. |
[16] |
H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$,, in, 878 (1981), 351.
|
[17] |
V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers,, Colloq. Math., 105 (2006), 197.
doi: 10.4064/cm105-2-3. |
[1] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[4] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[5] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[6] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[7] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[8] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[9] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[10] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[13] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[14] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[15] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[16] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[17] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[18] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[19] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]