July  2013, 33(7): 2667-2679. doi: 10.3934/dcds.2013.33.2667

The period set of a map from the Cantor set to itself

1. 

Mathematics Department, Brigham Young University, Provo, UT, 84602, United States

2. 

Mathematics Department, Southern Utah University, Cedar City, UT, 84720, United States

3. 

Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, PL-80952 Gdańsk, Poland

Received  March 2012 Revised  August 2012 Published  January 2013

In this paper we consider all possible period sets $P(f)$ for self-maps of the Cantor set, $f:C\to C$. We prove that the possible period sets are completely unrestricted provided that, in addition, one allows points that are not periodic. However, if every point is periodic, we show that a surprising finiteness condition is imposed on $P(f)$: namely, there is a finite subset $B$ of $P(f)$ such that every element of $P(f)$ is divisible by at least one element of $B$.
Citation: James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667
References:
[1]

Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341. doi: 10.1142/S021812740300656X.

[2]

Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$, Trans. Amer. Math. Soc., 313 (1989), 475-538. doi: 10.2307/2001417.

[3]

Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5-71.

[4]

Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$, Ergodic Theory Dynam. Systems, 11 (1991), 249-271. doi: 10.1017/S0143385700006131.

[5]

Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites, Topology Proc., 18 (1993), 19-31.

[6]

Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, in "Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979)" 819 of Lecture Notes in Math., 18-34. Springer, Berlin, (1980).

[7]

A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84-87.

[8]

Patrick Gallagher, Approximation by reduced fractions, J. Math. Soc. Japan, 13 (1961), 342-345.

[9]

Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space, in "Thirty Years After Sharkovskiĭ's Theorem: New Perspectives (Murcia, 1994)" 8 of World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc., 95-106. World Sci. Publ., River Edge, NJ, (1995). Reprint of the paper reviewed in MR1361924 (97d:58161).

[10]

W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua, Proc. Amer. Math. Soc., 107 (1989), 549-553. doi: 10.2307/2047846.

[11]

Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics," Ph.D thesis, Brigham Young University, 2010.

[12]

Michał Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems, 2 (1982), 221-227.

[13]

E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets, Mat. Zametki, 73 (2003), 466-468. Translation in Math. Notes, 73 (2003), 436-439. doi: 10.1023/A:1023234532265.

[14]

T. Pezda, Polynomial cycles in certain local domains, Acta Arith., 66 (1994), 11-22.

[15]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273. Translated from the Russian Ukrain. Mat. Zh., 16 (1964), 61-71 by J. Tolosa. doi: 10.1142/S0218127495000934.

[16]

H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$, in "Numerical Solution of Nonlinear Equations (Bremen, 1980)" 878 of Lecture Notes in Math., 351-370. Springer, Berlin, (1981).

[17]

V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers, Colloq. Math., 105 (2006), 197-205. doi: 10.4064/cm105-2-3.

show all references

References:
[1]

Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341. doi: 10.1142/S021812740300656X.

[2]

Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$, Trans. Amer. Math. Soc., 313 (1989), 475-538. doi: 10.2307/2001417.

[3]

Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5-71.

[4]

Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$, Ergodic Theory Dynam. Systems, 11 (1991), 249-271. doi: 10.1017/S0143385700006131.

[5]

Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites, Topology Proc., 18 (1993), 19-31.

[6]

Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, in "Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979)" 819 of Lecture Notes in Math., 18-34. Springer, Berlin, (1980).

[7]

A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84-87.

[8]

Patrick Gallagher, Approximation by reduced fractions, J. Math. Soc. Japan, 13 (1961), 342-345.

[9]

Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space, in "Thirty Years After Sharkovskiĭ's Theorem: New Perspectives (Murcia, 1994)" 8 of World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc., 95-106. World Sci. Publ., River Edge, NJ, (1995). Reprint of the paper reviewed in MR1361924 (97d:58161).

[10]

W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua, Proc. Amer. Math. Soc., 107 (1989), 549-553. doi: 10.2307/2047846.

[11]

Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics," Ph.D thesis, Brigham Young University, 2010.

[12]

Michał Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems, 2 (1982), 221-227.

[13]

E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets, Mat. Zametki, 73 (2003), 466-468. Translation in Math. Notes, 73 (2003), 436-439. doi: 10.1023/A:1023234532265.

[14]

T. Pezda, Polynomial cycles in certain local domains, Acta Arith., 66 (1994), 11-22.

[15]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273. Translated from the Russian Ukrain. Mat. Zh., 16 (1964), 61-71 by J. Tolosa. doi: 10.1142/S0218127495000934.

[16]

H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$, in "Numerical Solution of Nonlinear Equations (Bremen, 1980)" 878 of Lecture Notes in Math., 351-370. Springer, Berlin, (1981).

[17]

V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers, Colloq. Math., 105 (2006), 197-205. doi: 10.4064/cm105-2-3.

[1]

María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153

[2]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[3]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[4]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[5]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[6]

Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171

[7]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[8]

Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

[9]

Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81

[10]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[11]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[12]

Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

[13]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[14]

C. Morales. On spiral periodic points and saddles for surface diffeomorphisms. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1191-1195. doi: 10.3934/dcds.2011.29.1191

[15]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[16]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[17]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[18]

G. Conner, Christopher P. Grant, Mark H. Meilstrup. A Sharkovsky theorem for non-locally connected spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3485-3499. doi: 10.3934/dcds.2012.32.3485

[19]

Jonas Deré. Periodic and eventually periodic points of affine infra-nilmanifold endomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5347-5368. doi: 10.3934/dcds.2016035

[20]

Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (156)
  • HTML views (0)
  • Cited by (1)

[Back to Top]