July  2013, 33(7): 2681-2710. doi: 10.3934/dcds.2013.33.2681

Global weak solutions to a general liquid crystals system

1. 

Department of Mathematics, Huzhou Teachers College, Zhejiang Huzhou, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai, China, China

Received  January 2012 Revised  November 2012 Published  January 2013

We prove the global existence of finite energy weak solutions to the general liquid crystals system. The problem is studied in bounded domain of $\mathbb{R}^3$ with Dirichlet boundary conditions and the whole space $\mathbb{R}^3$.
Citation: Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681
References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289.   Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994).   Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.   Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994).   Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231.   Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093.  doi: 10.1137/0521061.  Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998).   Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5.   Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581.   Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977).   Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1.   Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757.   Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

show all references

References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289.   Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994).   Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.   Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994).   Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231.   Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093.  doi: 10.1137/0521061.  Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998).   Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5.   Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581.   Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977).   Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1.   Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757.   Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[4]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[7]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[8]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[9]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[10]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[15]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]