• Previous Article
    Multiple critical points for a class of periodic lower semicontinuous functionals
  • DCDS Home
  • This Issue
  • Next Article
    Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential
January  2013, 33(1): 27-46. doi: 10.3934/dcds.2013.33.27

On general properties of retarded functional differential equations on manifolds

1. 

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Via S. Marta 3, I-50139 Firenze, Italy, Italy, Italy

2. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy

Received  August 2011 Revised  February 2012 Published  September 2012

We investigate general properties, such as existence and uniqueness, continuous dependence on data and continuation, of solutions to retarded functional differential equations with infinite delay on a differentiable manifold.
Citation: Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27
References:
[1]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, Retarded functional differential equations on manifolds and applications to motion problems for forced constrained systems, Adv. Nonlinear Stud., 9 (2009), 199-214.

[2]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, A continuation result for forced oscillations of constrained motion problems with infinite delay,, to appear in Adv. Nonlinear Stud., (). 

[3]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force, J. Dyn. Diff. Equat., 23 (2011), 541-549. doi: 10.1007/s10884-010-9201-2.

[4]

G. Bouligand, "Introduction à la Géométrie Infinitésimale Directe,'' Gauthier-Villard, Paris, 1932.

[5]

N. Dunford and J. T. Schwartz, "Linear Operators,'' Wiley & Sons, Inc., New York, 1957.

[6]

R. Gaines and J. Mawhin, "Coincidence Degree and Nonlinear Differential Equations,'' Lecture Notes in Math., Springer Verlag, Berlin, 568, 1977.

[7]

V. Guillemin and A. Pollack, "Differential Topology,'' Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974.

[8]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvac., 21 (1978), 11-41.

[9]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,'' Springer Verlag, New York, 1993.

[10]

Y. Hino, S. Murakami and T. Naito, "Functional-Differential Equations with Infinite Delay,'' Lecture Notes in Math., Springer Verlag, Berlin, 1473, 1991.

[11]

M. W. Hirsch, "Differential Topology,'' Graduate Texts in Math., Springer Verlag, Berlin, 33, 1976.

[12]

J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101-162.

[13]

J. M. Milnor, "Topology from the Differentiable Viewpoint,'' Univ. Press of Virginia, Charlottesville, 1965.

[14]

J. R. Munkres, "Elementary Differential Topology,'' Princeton University Press, Princeton, New Jersey, 1966.

[15]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306. doi: 10.1007/BF02417109.

[16]

R. D. Nussbaum, The fixed point index and fixed point theorems, in "Topological methods for ordinary differential equations'' (Montecatini Terme, 1991), Lecture Notes in Math., Springer Verlag, Berlin, 1537 (1993), 143-205.

[17]

W. M. Oliva, Functional differential equations on compact manifolds and an approximation theorem, J. Differential Equations, 5 (1969), 483-496.

[18]

W. M. Oliva, Functional differential equations-generic theory, in "Dynamical Systems'' (Proc. Internat. Sympos., Brown Univ., Providence, R. I., 1974), Academic Press, New York, (1976), 195-209.

[19]

W. M. Oliva and C. Rocha, Reducible volterra and levin-nohel retarded equations with infinite delay, J. Dyn. Diff. Equat., 22 (2010), 509-532. doi: 10.1007/s10884-010-9177-y.

show all references

References:
[1]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, Retarded functional differential equations on manifolds and applications to motion problems for forced constrained systems, Adv. Nonlinear Stud., 9 (2009), 199-214.

[2]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, A continuation result for forced oscillations of constrained motion problems with infinite delay,, to appear in Adv. Nonlinear Stud., (). 

[3]

P. Benevieri, A. Calamai, M. Furi and M. P. Pera, On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force, J. Dyn. Diff. Equat., 23 (2011), 541-549. doi: 10.1007/s10884-010-9201-2.

[4]

G. Bouligand, "Introduction à la Géométrie Infinitésimale Directe,'' Gauthier-Villard, Paris, 1932.

[5]

N. Dunford and J. T. Schwartz, "Linear Operators,'' Wiley & Sons, Inc., New York, 1957.

[6]

R. Gaines and J. Mawhin, "Coincidence Degree and Nonlinear Differential Equations,'' Lecture Notes in Math., Springer Verlag, Berlin, 568, 1977.

[7]

V. Guillemin and A. Pollack, "Differential Topology,'' Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974.

[8]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvac., 21 (1978), 11-41.

[9]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,'' Springer Verlag, New York, 1993.

[10]

Y. Hino, S. Murakami and T. Naito, "Functional-Differential Equations with Infinite Delay,'' Lecture Notes in Math., Springer Verlag, Berlin, 1473, 1991.

[11]

M. W. Hirsch, "Differential Topology,'' Graduate Texts in Math., Springer Verlag, Berlin, 33, 1976.

[12]

J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101-162.

[13]

J. M. Milnor, "Topology from the Differentiable Viewpoint,'' Univ. Press of Virginia, Charlottesville, 1965.

[14]

J. R. Munkres, "Elementary Differential Topology,'' Princeton University Press, Princeton, New Jersey, 1966.

[15]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306. doi: 10.1007/BF02417109.

[16]

R. D. Nussbaum, The fixed point index and fixed point theorems, in "Topological methods for ordinary differential equations'' (Montecatini Terme, 1991), Lecture Notes in Math., Springer Verlag, Berlin, 1537 (1993), 143-205.

[17]

W. M. Oliva, Functional differential equations on compact manifolds and an approximation theorem, J. Differential Equations, 5 (1969), 483-496.

[18]

W. M. Oliva, Functional differential equations-generic theory, in "Dynamical Systems'' (Proc. Internat. Sympos., Brown Univ., Providence, R. I., 1974), Academic Press, New York, (1976), 195-209.

[19]

W. M. Oliva and C. Rocha, Reducible volterra and levin-nohel retarded equations with infinite delay, J. Dyn. Diff. Equat., 22 (2010), 509-532. doi: 10.1007/s10884-010-9177-y.

[1]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[2]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[3]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[4]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021069

[5]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[6]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure and Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[7]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[8]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[9]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[10]

Ya Wang, Fuke Wu, Xuerong Mao, Enwen Zhu. Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 287-300. doi: 10.3934/dcdsb.2019182

[11]

Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021040

[12]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[13]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[14]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[15]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[16]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[17]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107

[19]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[20]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (5)

[Back to Top]