July  2013, 33(7): 2711-2755. doi: 10.3934/dcds.2013.33.2711

Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator

1. 

Texas A&M University, College Station, Texas 77843, United States

Received  April 2012 Revised  October 2012 Published  January 2013

We consider the $\mathbf{U}(1)$-invariant nonlinear Klein-Gordon equation in discrete space and discrete time, which is the discretization of the nonlinear continuous Klein-Gordon equation. To obtain this equation, we use the energy-conserving finite-difference scheme of Strauss-Vazquez. We prove that each finite energy solution converges as $T → ± ∞$ to the finite-dimensional set of all multifrequency solitary wave solutions with one, two, and four frequencies. The components of the solitary manifold corresponding to the solitary waves of the first two types are generically two-dimensional, while the component corresponding to the last type is generically four-dimensional. The attraction to the set of solitary waves is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent radiation. For the proof, we develop the well-posedness for the nonlinear wave equation in discrete space-time, apply the technique of quasimeasures, and also obtain the version of the Titchmarsh convolution theorem for distributions on the circle.
Citation: Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).   Google Scholar

[2]

J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).  doi: 10.1016/j.cma.2010.04.013.  Google Scholar

[3]

A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.  doi: 10.1134/S1061920811040030.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[5]

M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.   Google Scholar

[6]

C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.   Google Scholar

[7]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.   Google Scholar

[8]

D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.  doi: 10.1016/S0377-0427(00)00527-6.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).   Google Scholar

[10]

S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61.   Google Scholar

[11]

L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.   Google Scholar

[12]

A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[13]

A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855.   Google Scholar

[14]

A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[15]

A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012).   Google Scholar

[16]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.  doi: 10.1090/S1061-0022-2010-01115-4.  Google Scholar

[17]

B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).   Google Scholar

[18]

J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.   Google Scholar

[19]

S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.  doi: 10.1137/0732083.  Google Scholar

[20]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.   Google Scholar

[21]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[22]

I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.   Google Scholar

[23]

A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.   Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.   Google Scholar

[25]

W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.   Google Scholar

[26]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[27]

T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.   Google Scholar

[28]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).   Google Scholar

[29]

E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283.   Google Scholar

[30]

J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889.   Google Scholar

[31]

K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).   Google Scholar

[2]

J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).  doi: 10.1016/j.cma.2010.04.013.  Google Scholar

[3]

A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.  doi: 10.1134/S1061920811040030.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[5]

M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.   Google Scholar

[6]

C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.   Google Scholar

[7]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.   Google Scholar

[8]

D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.  doi: 10.1016/S0377-0427(00)00527-6.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).   Google Scholar

[10]

S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61.   Google Scholar

[11]

L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.   Google Scholar

[12]

A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[13]

A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855.   Google Scholar

[14]

A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[15]

A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012).   Google Scholar

[16]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.  doi: 10.1090/S1061-0022-2010-01115-4.  Google Scholar

[17]

B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).   Google Scholar

[18]

J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.   Google Scholar

[19]

S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.  doi: 10.1137/0732083.  Google Scholar

[20]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.   Google Scholar

[21]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[22]

I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.   Google Scholar

[23]

A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.   Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.   Google Scholar

[25]

W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.   Google Scholar

[26]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[27]

T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.   Google Scholar

[28]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).   Google Scholar

[29]

E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283.   Google Scholar

[30]

J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889.   Google Scholar

[31]

K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

[1]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[2]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[3]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[4]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[5]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[6]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[10]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[11]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[12]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[15]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[16]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[17]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[18]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]