-
Previous Article
Asymptotics of the $s$-perimeter as $s\searrow 0$
- DCDS Home
- This Issue
-
Next Article
Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator
Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support
1. | Univ Lille Nord de France, 59000 Lille |
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).
|
[2] |
K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.
|
[3] |
H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1.
doi: 10.3934/dcdsb.2008.10.1. |
[4] |
H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117.
doi: 10.1007/s00021-010-0040-z. |
[5] |
P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.
|
[6] |
P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117. Google Scholar |
[7] |
P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.
|
[8] |
P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119.
doi: 10.4064/bc81-0-8. |
[9] |
P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191.
doi: 10.1007/978-3-642-04068-9_12. |
[10] |
P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886.
doi: 10.1137/080723831. |
[11] |
P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., (). Google Scholar |
[12] |
P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., (). Google Scholar |
[13] |
P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., (). Google Scholar |
[14] |
P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86.
doi: 10.1002/mana.200310167. |
[15] |
P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705.
doi: 10.1137/100786198. |
[16] |
Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291.
doi: 10.1512/iumj.2004.53.2463. |
[17] |
Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339.
doi: 10.1007/s00021-004-0132-8. |
[18] |
R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409.
doi: 10.1007/BF02571437. |
[19] |
R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.
|
[20] |
S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).
|
[21] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998).
doi: 10.1007/978-1-4612-5364-8. |
[22] |
G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994).
doi: 10.1007/978-1-4612-5364-8. |
[23] |
J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.
|
[24] |
J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.
doi: 10.1512/iumj.1980.29.29048. |
[25] |
G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.
|
[26] |
G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.
|
[27] |
T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1.
doi: 10.1007/s002080050134. |
[28] |
S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59.
doi: 10.2969/jmsj/05310059. |
[29] |
K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.
|
[30] |
M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201.
doi: 10.1137/0512021. |
[31] |
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.
|
[32] |
R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497.
doi: 10.2969/jmsj/03630497. |
[33] |
Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293.
doi: 10.2307/2374910. |
[34] |
Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.
|
[35] |
V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.
|
[36] |
S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751.
doi: 10.1016/S0362-546X(98)00070-4. |
[37] |
R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
[38] |
K. Yoshida, "Functional Analysis,", (6th ed.), (1980).
|
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).
|
[2] |
K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.
|
[3] |
H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1.
doi: 10.3934/dcdsb.2008.10.1. |
[4] |
H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117.
doi: 10.1007/s00021-010-0040-z. |
[5] |
P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.
|
[6] |
P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117. Google Scholar |
[7] |
P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.
|
[8] |
P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119.
doi: 10.4064/bc81-0-8. |
[9] |
P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191.
doi: 10.1007/978-3-642-04068-9_12. |
[10] |
P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886.
doi: 10.1137/080723831. |
[11] |
P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., (). Google Scholar |
[12] |
P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., (). Google Scholar |
[13] |
P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., (). Google Scholar |
[14] |
P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86.
doi: 10.1002/mana.200310167. |
[15] |
P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705.
doi: 10.1137/100786198. |
[16] |
Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291.
doi: 10.1512/iumj.2004.53.2463. |
[17] |
Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339.
doi: 10.1007/s00021-004-0132-8. |
[18] |
R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409.
doi: 10.1007/BF02571437. |
[19] |
R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.
|
[20] |
S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).
|
[21] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998).
doi: 10.1007/978-1-4612-5364-8. |
[22] |
G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994).
doi: 10.1007/978-1-4612-5364-8. |
[23] |
J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.
|
[24] |
J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.
doi: 10.1512/iumj.1980.29.29048. |
[25] |
G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.
|
[26] |
G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.
|
[27] |
T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1.
doi: 10.1007/s002080050134. |
[28] |
S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59.
doi: 10.2969/jmsj/05310059. |
[29] |
K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.
|
[30] |
M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201.
doi: 10.1137/0512021. |
[31] |
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.
|
[32] |
R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497.
doi: 10.2969/jmsj/03630497. |
[33] |
Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293.
doi: 10.2307/2374910. |
[34] |
Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.
|
[35] |
V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.
|
[36] |
S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751.
doi: 10.1016/S0362-546X(98)00070-4. |
[37] |
R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
[38] |
K. Yoshida, "Functional Analysis,", (6th ed.), (1980).
|
[1] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[6] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[7] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[8] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[9] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[10] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[11] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[15] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[16] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[19] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[20] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]