July  2013, 33(7): 2757-2776. doi: 10.3934/dcds.2013.33.2757

Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support

1. 

Univ Lille Nord de France, 59000 Lille

Received  April 2012 Revised  November 2012 Published  January 2013

The article deals with the time-dependent Oseen system in a 3D exterior domain. It is shown that the velocity part of a weak solution to that system decays as $\bigl(\, |x| \cdot (1+|x|-x_1) \,\bigr) ^{-1}$, and its spatial gradient as $\bigl(\, |x| \cdot (1+|x|-x_1) \,\bigr) ^{-3/2}$, for $|x|\to \infty $. This result is obtained for data that need not have compact support.
Citation: Paul Deuring. Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2757-2776. doi: 10.3934/dcds.2013.33.2757
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.   Google Scholar

[3]

H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1.  doi: 10.3934/dcdsb.2008.10.1.  Google Scholar

[4]

H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117.  doi: 10.1007/s00021-010-0040-z.  Google Scholar

[5]

P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.   Google Scholar

[6]

P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117.   Google Scholar

[7]

P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.   Google Scholar

[8]

P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119.  doi: 10.4064/bc81-0-8.  Google Scholar

[9]

P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191.  doi: 10.1007/978-3-642-04068-9_12.  Google Scholar

[10]

P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886.  doi: 10.1137/080723831.  Google Scholar

[11]

P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., ().   Google Scholar

[12]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., ().   Google Scholar

[13]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., ().   Google Scholar

[14]

P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86.  doi: 10.1002/mana.200310167.  Google Scholar

[15]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705.  doi: 10.1137/100786198.  Google Scholar

[16]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291.  doi: 10.1512/iumj.2004.53.2463.  Google Scholar

[17]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339.  doi: 10.1007/s00021-004-0132-8.  Google Scholar

[18]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409.  doi: 10.1007/BF02571437.  Google Scholar

[19]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.   Google Scholar

[20]

S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).   Google Scholar

[21]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[22]

G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[23]

J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.   Google Scholar

[24]

J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[25]

G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.   Google Scholar

[26]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.   Google Scholar

[27]

T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1.  doi: 10.1007/s002080050134.  Google Scholar

[28]

S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59.  doi: 10.2969/jmsj/05310059.  Google Scholar

[29]

K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.   Google Scholar

[30]

M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201.  doi: 10.1137/0512021.  Google Scholar

[31]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.   Google Scholar

[32]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497.  doi: 10.2969/jmsj/03630497.  Google Scholar

[33]

Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293.  doi: 10.2307/2374910.  Google Scholar

[34]

Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.   Google Scholar

[35]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.   Google Scholar

[36]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751.  doi: 10.1016/S0362-546X(98)00070-4.  Google Scholar

[37]

R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

[38]

K. Yoshida, "Functional Analysis,", (6th ed.), (1980).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

K. I. Babenko and M. M. Vasil'ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body,, Prikl. Mat. Meh., 37 (1973), 690.   Google Scholar

[3]

H.-O. Bae and B. J. Jin, Estimates of the wake for the 3D Oseen equations,, DCDS-B, 10 (2008), 1.  doi: 10.3934/dcdsb.2008.10.1.  Google Scholar

[4]

H.-O. Bae and J. Roh, Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains,, J. Math. Fluid Mech., 14 (2012), 117.  doi: 10.1007/s00021-010-0040-z.  Google Scholar

[5]

P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient,, IASME Transactions, 6 (2005), 900.   Google Scholar

[6]

P. Deuring, The single-layer potential associated with the time-dependent Oseen system,, in, (2006), 117.   Google Scholar

[7]

P. Deuring, On volume potentials related to the time-dependent Oseen system,, WSEAS Transactions on Math., 5 (2006), 252.   Google Scholar

[8]

P. Deuring, On boundary driven time-dependent Oseen flows,, Banach Center Publications, 81 (2008), 119.  doi: 10.4064/bc81-0-8.  Google Scholar

[9]

P. Deuring, A potential theoretic approach to the time-dependent Oseen system,, in, (2010), 191.  doi: 10.1007/978-3-642-04068-9_12.  Google Scholar

[10]

P. Deuring, Spatial decay of time-dependent Oseen flows,, SIAM J. Math. Anal., 41 (2009), 886.  doi: 10.1137/080723831.  Google Scholar

[11]

P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., ().   Google Scholar

[12]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., ().   Google Scholar

[13]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., ().   Google Scholar

[14]

P. Deuring and S. Kračmar, Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains,, Math. Nachr., 269/270 (2004), 86.  doi: 10.1002/mana.200310167.  Google Scholar

[15]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and tranlating bodies,, SIAM J. Math. Anal., 43 (2011), 705.  doi: 10.1137/100786198.  Google Scholar

[16]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain,, Indiana Univ. Math. J., 53 (2004), 1291.  doi: 10.1512/iumj.2004.53.2463.  Google Scholar

[17]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation,, J. Math. Fluid Mech., 7 (2005), 339.  doi: 10.1007/s00021-004-0132-8.  Google Scholar

[18]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409.  doi: 10.1007/BF02571437.  Google Scholar

[19]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems,, Arch. Rational Mech. Anal., 19 (1965), 363.   Google Scholar

[20]

S. Fučik, O. John and A. Kufner, "Function Spaces,", Noordhoff, (1977).   Google Scholar

[21]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,", (corr. 2nd print.), (1998).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[22]

G. P. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[23]

J. G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations,, Acta Math., 129 (1972), 11.   Google Scholar

[24]

J. G. Heywood, The Navier-Stokes equations. On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[25]

G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ \mathbbR ^n$,, SIAM J. Math. Anal., 3 (1972), 506.   Google Scholar

[26]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations,, in, 771 (1979), 287.   Google Scholar

[27]

T. Kobayashi and Y. Shibata, On the Oseen equation in three dimensional exterior domains,, Math. Ann., 310 (1998), 1.  doi: 10.1007/s002080050134.  Google Scholar

[28]

S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces,, J. Math. Soc. Japan, 53 (2001), 59.  doi: 10.2969/jmsj/05310059.  Google Scholar

[29]

K. Masuda, On the stability of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 27 (1975), 294.   Google Scholar

[30]

M. McCracken, The resolvent problem for the Stokes equations on halfspace in $L_p^*$,, SIAM J. Math. Anal., 12 (1981), 201.  doi: 10.1137/0512021.  Google Scholar

[31]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.   Google Scholar

[32]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies,, J. Math. Soc. Japan, 36 (1984), 497.  doi: 10.2969/jmsj/03630497.  Google Scholar

[33]

Zongwei Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders,, American J. Math., 113 (1991), 293.  doi: 10.2307/2374910.  Google Scholar

[34]

Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations,, Quarterly Appl. Math., 57 (1999), 117.   Google Scholar

[35]

V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.   Google Scholar

[36]

S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations,, Nonlinear Anal., 37 (1999), 751.  doi: 10.1016/S0362-546X(98)00070-4.  Google Scholar

[37]

R. Teman, "Navier-Stokes Equations. Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

[38]

K. Yoshida, "Functional Analysis,", (6th ed.), (1980).   Google Scholar

[1]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[2]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[3]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[4]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[5]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[7]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[8]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[9]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[14]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[15]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[16]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[19]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[20]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]