July  2013, 33(7): 2777-2790. doi: 10.3934/dcds.2013.33.2777

Asymptotics of the $s$-perimeter as $s\searrow 0$

1. 

SISSA - International School for Advanced Studies, Sector of Mathematical Analysis Via Bonomea, 265, 34136 Trieste, Italy

2. 

University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202

3. 

Università degli Studi di Parma, Dipartimento di Matematica Campus - Parco Area delle Scienze, 53/A, 43124 Parma, Italy

4. 

Università degli Studi di Milano, Dipartimento di Matematica Via Saldini, 50, 20133 Milano

Received  April 2012 Revised  August 2012 Published  January 2013

We deal with the asymptotic behavior of the $s$-perimeter of a set $E$ inside a domain $\Omega$ as $s\searrow0$. We prove necessary and sufficient conditions for the existence of such limit, by also providing an explicit formulation in terms of the Lebesgue measure of $E$ and $\Omega$. Moreover, we construct examples of sets for which the limit does not exist.
Citation: Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Enrico Valdinoci. Asymptotics of the $s$-perimeter as $s\searrow 0$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2777-2790. doi: 10.3934/dcds.2013.33.2777
References:
[1]

L. Ambrosio, G. De Philippis and L. Martinazzi, $\Gamma$-convergence of nonlocal perimeter functionals,, Manuscripta Math., 134 (2011), 377.  doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), ().   Google Scholar

[3]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.  doi: 10.1002/cpa.20331.  Google Scholar

[4]

L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Ration. Mech. Anal., 195 (2010), 1.  doi: 10.1007/s00205-008-0181-x.  Google Scholar

[5]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces,, Calc. Var. Partial Differential Equations, 41 (2011), 203.  doi: 10.1007/s00526-010-0359-6.  Google Scholar

[6]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11.   Google Scholar

[7]

M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, ().   Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, ().   Google Scholar

[10]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces,, J. Funct. Anal., 195 (2002), 230.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[11]

O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, ().   Google Scholar

[12]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479.  doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[13]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[14]

A. Visintin, Nonconvex functionals related to multiphase systems,, SIAM J. Math. Anal., 21 (1990), 1281.  doi: 10.1137/0521071.  Google Scholar

[15]

A. Visintin, Generalized coarea formula and fractal sets,, Japan J. Industrial Appl. Math., 8 (1991), 175.  doi: 10.1007/BF03167679.  Google Scholar

show all references

References:
[1]

L. Ambrosio, G. De Philippis and L. Martinazzi, $\Gamma$-convergence of nonlocal perimeter functionals,, Manuscripta Math., 134 (2011), 377.  doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), ().   Google Scholar

[3]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.  doi: 10.1002/cpa.20331.  Google Scholar

[4]

L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation,, Arch. Ration. Mech. Anal., 195 (2010), 1.  doi: 10.1007/s00205-008-0181-x.  Google Scholar

[5]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces,, Calc. Var. Partial Differential Equations, 41 (2011), 203.  doi: 10.1007/s00526-010-0359-6.  Google Scholar

[6]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11.   Google Scholar

[7]

M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, ().   Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, ().   Google Scholar

[10]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces,, J. Funct. Anal., 195 (2002), 230.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[11]

O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, ().   Google Scholar

[12]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479.  doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[13]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[14]

A. Visintin, Nonconvex functionals related to multiphase systems,, SIAM J. Math. Anal., 21 (1990), 1281.  doi: 10.1137/0521071.  Google Scholar

[15]

A. Visintin, Generalized coarea formula and fractal sets,, Japan J. Industrial Appl. Math., 8 (1991), 175.  doi: 10.1007/BF03167679.  Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[3]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[6]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[9]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[12]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[13]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[14]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[15]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[16]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[17]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[18]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[19]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[20]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (27)

[Back to Top]