• Previous Article
    Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
  • DCDS Home
  • This Issue
  • Next Article
    Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations
July  2013, 33(7): 2809-2827. doi: 10.3934/dcds.2013.33.2809

Lipschitz metric for the Camassa--Holm equation on the line

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim

2. 

Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo

Received  March 2012 Revised  May 2012 Published  January 2013

We study stability of solutions of the Cauchy problem on the line for the Camassa--Holm equation $u_t-u_{xxt}+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with initial data $u_0$. In particular, we derive a new Lipschitz metric $d_D$ with the property that for two solutions $u$ and $v$ of the equation we have $d_D(u(t),v(t))\le e^{Ct} d_D(u_0,v_0)$. The relationship between this metric and the usual norms in $H^1$ and $L^\infty$ is clarified. The method extends to the generalized hyperelastic-rod equation $u_t-u_{xxt}+f(u)_x-f(u)_{xxx}+(g(u)+\frac12 f''(u)(u_x)^2)_x=0$ (for $f$ without inflection points).
Citation: Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68.  doi: 10.1016/j.matpur.2010.02.005.  Google Scholar

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[4]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.   Google Scholar

[5]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.   Google Scholar

[6]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[7]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[8]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[9]

H.-H. Dai, Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods,, Wave Motion, 28 (1998), 367.  doi: 10.1016/S0165-2125(98)00014-6.  Google Scholar

[10]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[11]

H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460.  doi: 10.1016/j.jde.2010.07.006.  Google Scholar

[13]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[14]

H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa-Holm equation,, J. Hyperbolic Differ. Equ., 4 (2007), 39.  doi: 10.1142/S0219891607001045.  Google Scholar

[15]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.  doi: 10.1016/j.jde.2006.09.007.  Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68.  doi: 10.1016/j.matpur.2010.02.005.  Google Scholar

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[4]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.   Google Scholar

[5]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.   Google Scholar

[6]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[7]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[8]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[9]

H.-H. Dai, Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods,, Wave Motion, 28 (1998), 367.  doi: 10.1016/S0165-2125(98)00014-6.  Google Scholar

[10]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[11]

H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460.  doi: 10.1016/j.jde.2010.07.006.  Google Scholar

[13]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[14]

H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa-Holm equation,, J. Hyperbolic Differ. Equ., 4 (2007), 39.  doi: 10.1142/S0219891607001045.  Google Scholar

[15]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.  doi: 10.1016/j.jde.2006.09.007.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[9]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[10]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[18]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[19]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[20]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]