-
Previous Article
Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$
- DCDS Home
- This Issue
-
Next Article
Lipschitz metric for the Camassa--Holm equation on the line
Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
1. | School of Mathematics, Institute for Advanced Study, Einstein Drive, Simonyi Hall, Princeton, New Jersey, 08540, United States |
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).
|
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.
|
[3] |
I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.
doi: 10.1088/0951-7715/19/6/011. |
[4] |
I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).
|
[5] |
I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.
doi: 10.1016/j.jde.2004.10.017. |
[6] |
I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).
doi: 10.1016/j.jde.2012.09.003. |
[7] |
L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).
|
[8] |
A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.
doi: 10.1007/s002200050190. |
[9] |
A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.
doi: 10.3934/dcds.2004.11.785. |
[10] |
A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.
|
[11] |
A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).
|
[12] |
E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.
doi: 10.1016/0362-546X(93)90031-M. |
[13] |
E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.
doi: 10.1006/jdeq.1995.1093. |
[14] |
V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.
|
[15] |
V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.
doi: 10.1016/S0167-2789(96)00133-9. |
[16] |
V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.
doi: 10.1088/0951-7715/10/1/012. |
[17] |
V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.
|
[18] |
G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.
doi: 10.1007/s002200050579. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[20] |
M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.
doi: 10.1007/s00332-010-9068-8. |
[21] |
M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.
doi: 10.1088/0951-7715/25/5/1367. |
[22] |
P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).
doi: 10.1090/conm/081/986267. |
[23] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.
|
[24] |
P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).
|
[25] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[26] |
J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.
|
[27] |
A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.
doi: 10.1016/0021-8928(84)90078-9. |
[28] |
C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006). Google Scholar |
[29] |
C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.
|
[30] |
H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar |
[31] |
D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.
|
[32] |
D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.
doi: 10.1016/S0012-9593(00)01063-6. |
[33] |
S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.
|
[34] |
J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.
|
[35] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.
doi: 10.1088/0951-7715/22/5/012. |
[36] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.
|
show all references
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).
|
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.
|
[3] |
I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.
doi: 10.1088/0951-7715/19/6/011. |
[4] |
I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).
|
[5] |
I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.
doi: 10.1016/j.jde.2004.10.017. |
[6] |
I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).
doi: 10.1016/j.jde.2012.09.003. |
[7] |
L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).
|
[8] |
A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.
doi: 10.1007/s002200050190. |
[9] |
A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.
doi: 10.3934/dcds.2004.11.785. |
[10] |
A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.
|
[11] |
A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).
|
[12] |
E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.
doi: 10.1016/0362-546X(93)90031-M. |
[13] |
E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.
doi: 10.1006/jdeq.1995.1093. |
[14] |
V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.
|
[15] |
V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.
doi: 10.1016/S0167-2789(96)00133-9. |
[16] |
V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.
doi: 10.1088/0951-7715/10/1/012. |
[17] |
V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.
|
[18] |
G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.
doi: 10.1007/s002200050579. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[20] |
M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.
doi: 10.1007/s00332-010-9068-8. |
[21] |
M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.
doi: 10.1088/0951-7715/25/5/1367. |
[22] |
P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).
doi: 10.1090/conm/081/986267. |
[23] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.
|
[24] |
P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).
|
[25] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[26] |
J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.
|
[27] |
A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.
doi: 10.1016/0021-8928(84)90078-9. |
[28] |
C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006). Google Scholar |
[29] |
C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.
|
[30] |
H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar |
[31] |
D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.
|
[32] |
D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.
doi: 10.1016/S0012-9593(00)01063-6. |
[33] |
S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.
|
[34] |
J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.
|
[35] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.
doi: 10.1088/0951-7715/22/5/012. |
[36] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.
|
[1] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[2] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[3] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[4] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[5] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[6] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[7] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[8] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[11] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[12] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[13] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[14] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[15] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[16] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[17] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[18] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[19] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[20] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]