• Previous Article
    Global-in-time behavior of the solution to a Gierer-Meinhardt system
  • DCDS Home
  • This Issue
  • Next Article
    Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
July  2013, 33(7): 2861-2883. doi: 10.3934/dcds.2013.33.2861

Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$

1. 

Department of Mathematics, Fudan University, Shanghai, 200433, China

2. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275

Received  March 2012 Revised  June 2012 Published  January 2013

In this paper, we study the bifurcation of isolated closed orbits from degenerated singularity of $3$-dimensional polynomial system $dx/dt = Q(x)$. For some types of $Q(x)$, we get the lower bound for the number of these isolated closed orbits. In particular cases, an explicit (sometimes sharp) upper bound is obtained. Using these results, we investigate degenerated Hopf bifurcation and give a sufficient condition for the existence of isolated closed orbits. Also we show that the $3$ species model of degree $3$ admits $2$ isolated closed orbits bifurcating from origin.
Citation: Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861
References:
[1]

M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175.  doi: 10.1088/0951-7715/18/1/010.  Google Scholar

[2]

M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79.  doi: 10.2307/1998338.  Google Scholar

[3]

R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140.   Google Scholar

[4]

J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., ().  doi: 10.1080/00036811.2011.567193.  Google Scholar

[5]

J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088.  doi: 10.1016/j.na.2011.03.043.  Google Scholar

[6]

J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., ().   Google Scholar

[7]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51.   Google Scholar

[8]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243.   Google Scholar

[9]

J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529.   Google Scholar

[10]

J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490.  doi: 10.1006/jdeq.1996.0038.  Google Scholar

[11]

J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63.  doi: 10.1007/BF02874668.  Google Scholar

[12]

J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167.   Google Scholar

[13]

J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218.  doi: 10.1016/j.bulsci.2007.01.003.  Google Scholar

[14]

J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531.  doi: 10.1007/s10883-007-9025-5.  Google Scholar

[15]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[16]

J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321.  doi: 10.2140/pjm.2009.240.321.  Google Scholar

[17]

L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.   Google Scholar

[18]

Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986).   Google Scholar

show all references

References:
[1]

M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175.  doi: 10.1088/0951-7715/18/1/010.  Google Scholar

[2]

M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79.  doi: 10.2307/1998338.  Google Scholar

[3]

R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140.   Google Scholar

[4]

J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., ().  doi: 10.1080/00036811.2011.567193.  Google Scholar

[5]

J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088.  doi: 10.1016/j.na.2011.03.043.  Google Scholar

[6]

J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., ().   Google Scholar

[7]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51.   Google Scholar

[8]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243.   Google Scholar

[9]

J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529.   Google Scholar

[10]

J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490.  doi: 10.1006/jdeq.1996.0038.  Google Scholar

[11]

J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63.  doi: 10.1007/BF02874668.  Google Scholar

[12]

J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167.   Google Scholar

[13]

J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218.  doi: 10.1016/j.bulsci.2007.01.003.  Google Scholar

[14]

J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531.  doi: 10.1007/s10883-007-9025-5.  Google Scholar

[15]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[16]

J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321.  doi: 10.2140/pjm.2009.240.321.  Google Scholar

[17]

L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.   Google Scholar

[18]

Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986).   Google Scholar

[1]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[2]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[3]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[4]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[5]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[6]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[7]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[8]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[9]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[10]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[11]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[12]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[17]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[18]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[19]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[20]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]