-
Previous Article
Global-in-time behavior of the solution to a Gierer-Meinhardt system
- DCDS Home
- This Issue
-
Next Article
Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$
1. | Department of Mathematics, Fudan University, Shanghai, 200433, China |
2. | Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275 |
References:
[1] |
M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175.
doi: 10.1088/0951-7715/18/1/010. |
[2] |
M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79.
doi: 10.2307/1998338. |
[3] |
R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140.
|
[4] |
J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., ().
doi: 10.1080/00036811.2011.567193. |
[5] |
J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088.
doi: 10.1016/j.na.2011.03.043. |
[6] |
J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., (). Google Scholar |
[7] |
M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51.
|
[8] |
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243.
|
[9] |
J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529.
|
[10] |
J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490.
doi: 10.1006/jdeq.1996.0038. |
[11] |
J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63.
doi: 10.1007/BF02874668. |
[12] |
J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167.
|
[13] |
J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218.
doi: 10.1016/j.bulsci.2007.01.003. |
[14] |
J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531.
doi: 10.1007/s10883-007-9025-5. |
[15] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.
doi: 10.1088/0951-7715/15/4/313. |
[16] |
J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321.
doi: 10.2140/pjm.2009.240.321. |
[17] |
L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.
|
[18] |
Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986).
|
show all references
References:
[1] |
M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175.
doi: 10.1088/0951-7715/18/1/010. |
[2] |
M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79.
doi: 10.2307/1998338. |
[3] |
R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140.
|
[4] |
J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., ().
doi: 10.1080/00036811.2011.567193. |
[5] |
J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088.
doi: 10.1016/j.na.2011.03.043. |
[6] |
J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., (). Google Scholar |
[7] |
M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51.
|
[8] |
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243.
|
[9] |
J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529.
|
[10] |
J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490.
doi: 10.1006/jdeq.1996.0038. |
[11] |
J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63.
doi: 10.1007/BF02874668. |
[12] |
J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167.
|
[13] |
J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218.
doi: 10.1016/j.bulsci.2007.01.003. |
[14] |
J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531.
doi: 10.1007/s10883-007-9025-5. |
[15] |
J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.
doi: 10.1088/0951-7715/15/4/313. |
[16] |
J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321.
doi: 10.2140/pjm.2009.240.321. |
[17] |
L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185.
|
[18] |
Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986).
|
[1] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[2] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[3] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[4] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[5] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[6] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[7] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[8] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[9] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[10] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[11] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[12] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[17] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021035 |
[18] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[19] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[20] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]