Advanced Search
Article Contents
Article Contents

Partial hyperbolicity and central shadowing

Abstract Related Papers Cited by
  • We study shadowing property for a partially hyperbolic diffeomorphism $f$. It is proved that if $f$ is dynamically coherent then any pseudotrajectory can be shadowed by a pseudotrajectory with ``jumps'' along the central foliation. The proof is based on the Tikhonov-Shauder fixed point theorem.
    Mathematics Subject Classification: 37C50, 37D30.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur and L. Diaz, Pseudo-orbit shadowing in the $C^1$ topology, Discrete Contin. Dyn. Syst., 7 (2003), 223-245.


    D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.


    D. Bohnet and Ch. BonattiPartially hyperbolic diffeomorphisms with uniformly center foliation: the quotient dynamics, preprint arXiv:1210.2835.


    Ch. Bonatti, L. J. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," Springer, Berlin, 2004.


    Ch. Bonatti, L. Diaz and G. Turcat, There is no shadowing lemma for partially hyperbolic dynamics, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 587-592.doi: 10.1016/S0764-4442(00)00215-9.


    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes Math., 470, Springer, Berlin, 1975.


    M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems, 23 (2003), 395-401.doi: 10.1017/S0143385702001499.


    K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete and Continuous Dynamical Systems, 22 (2008), 89-100.doi: 10.3934/dcds.2008.22.89.


    N. Gourmelon, Adapted metric for dominated splitting, Ergod. Theory Dyn. Syst., 27 (2007), 1839-1849.doi: 10.1017/S0143385707000272.


    F. Rodriguez-Hertz, M. A. Rodriguez-Hertz and R. Ures, A survey of partially hyperbolic dynamics, Fields Institute Communications, Partially Hyperbolic Dynamics, Laminations and Teichmuller Flow, 51 (2007), 35-88.


    M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg, 1977.


    Huyi Hu, Yunhua Zhou and Yujun ZhuQuasi-Shadowing for Partially Hyperbolic Diffeomorphisms, preprint, arXiv:1210.4988.


    A. Morimoto, The method of pseudo-orbit tracing and stability of dynamical systems, Sem. Note, 39 (1979), Tokyo Univ.


    K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications," Kluwer, Dordrecht, 2000.


    S. Yu. Pilyugin, "Shadowing in Dynamical Systems," Lecture Notes in Math., 1706, Springer, Berlin, 1999.


    S. Yu. Pilyugin, Variational shadowing, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 733-737.doi: 10.3934/dcdsb.2010.14.733.


    S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing imply structural stability, Nonlinearity, 23 (2010), 2509-2515.doi: 10.1088/0951-7715/23/10/009.


    C. C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, revisited, J. of Modern Dynamics, 6 (2012), 79-120.doi: 10.3934/jmd.2012.6.79.


    C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mount. J. Math., 7 (1977), 425-437.


    K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms of closed manifolds, Osaka J. Math., 31 (1994), 373-386.


    K. Sawada, Extended f-orbits are approximated by orbits, Nagoya Math. J., 79 (1980), 33-45.


    J. Schauder, Der fixpunktsatz in funktionalraumen, Stud. Math., 2 (1930), 171-180.


    S. B. TikhomirovHölder shadowing on finite intervals, preprint, arXiv:1106.4053.

  • 加载中

Article Metrics

HTML views() PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint