\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial hyperbolicity and central shadowing

Abstract Related Papers Cited by
  • We study shadowing property for a partially hyperbolic diffeomorphism $f$. It is proved that if $f$ is dynamically coherent then any pseudotrajectory can be shadowed by a pseudotrajectory with ``jumps'' along the central foliation. The proof is based on the Tikhonov-Shauder fixed point theorem.
    Mathematics Subject Classification: 37C50, 37D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur and L. Diaz, Pseudo-orbit shadowing in the $C^1$ topology, Discrete Contin. Dyn. Syst., 7 (2003), 223-245.

    [2]

    D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.

    [3]

    D. Bohnet and Ch. BonattiPartially hyperbolic diffeomorphisms with uniformly center foliation: the quotient dynamics, preprint arXiv:1210.2835.

    [4]

    Ch. Bonatti, L. J. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," Springer, Berlin, 2004.

    [5]

    Ch. Bonatti, L. Diaz and G. Turcat, There is no shadowing lemma for partially hyperbolic dynamics, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 587-592.doi: 10.1016/S0764-4442(00)00215-9.

    [6]

    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes Math., 470, Springer, Berlin, 1975.

    [7]

    M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems, 23 (2003), 395-401.doi: 10.1017/S0143385702001499.

    [8]

    K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete and Continuous Dynamical Systems, 22 (2008), 89-100.doi: 10.3934/dcds.2008.22.89.

    [9]

    N. Gourmelon, Adapted metric for dominated splitting, Ergod. Theory Dyn. Syst., 27 (2007), 1839-1849.doi: 10.1017/S0143385707000272.

    [10]

    F. Rodriguez-Hertz, M. A. Rodriguez-Hertz and R. Ures, A survey of partially hyperbolic dynamics, Fields Institute Communications, Partially Hyperbolic Dynamics, Laminations and Teichmuller Flow, 51 (2007), 35-88.

    [11]

    M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg, 1977.

    [12]

    Huyi Hu, Yunhua Zhou and Yujun ZhuQuasi-Shadowing for Partially Hyperbolic Diffeomorphisms, preprint, arXiv:1210.4988.

    [13]

    A. Morimoto, The method of pseudo-orbit tracing and stability of dynamical systems, Sem. Note, 39 (1979), Tokyo Univ.

    [14]

    K. J. Palmer, "Shadowing in Dynamical Systems, Theory and Applications," Kluwer, Dordrecht, 2000.

    [15]

    S. Yu. Pilyugin, "Shadowing in Dynamical Systems," Lecture Notes in Math., 1706, Springer, Berlin, 1999.

    [16]

    S. Yu. Pilyugin, Variational shadowing, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 733-737.doi: 10.3934/dcdsb.2010.14.733.

    [17]

    S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing imply structural stability, Nonlinearity, 23 (2010), 2509-2515.doi: 10.1088/0951-7715/23/10/009.

    [18]

    C. C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, revisited, J. of Modern Dynamics, 6 (2012), 79-120.doi: 10.3934/jmd.2012.6.79.

    [19]

    C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mount. J. Math., 7 (1977), 425-437.

    [20]

    K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms of closed manifolds, Osaka J. Math., 31 (1994), 373-386.

    [21]

    K. Sawada, Extended f-orbits are approximated by orbits, Nagoya Math. J., 79 (1980), 33-45.

    [22]

    J. Schauder, Der fixpunktsatz in funktionalraumen, Stud. Math., 2 (1930), 171-180.

    [23]

    S. B. TikhomirovHölder shadowing on finite intervals, preprint, arXiv:1106.4053.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return