\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations

Abstract Related Papers Cited by
  • It is well known that a single nonlinear Schrödinger (NLS) equation with a potential $V$ and a small parameter $\varepsilon $ may have a unique positive solution that is concentrated at the nondegenerate minimum point of $V$ . However, the uniqueness may fail for two-component systems of NLS equations with a small parameter $\varepsilon $ and potentials $V_{1}$ and $V_{2}$ having the same nondegenerate minimum point. In this paper, we will use energy estimates and category theory to prove the nonuniqueness theorem.
    Mathematics Subject Classification: Primary: 35J50, 35J57; Secondary: 35J47.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, "Critical Points and Nonlinear Variational Problems," Bulletin Soc. Math. France, Mémoire, 1992.

    [2]

    A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067.

    [3]

    A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations, Journal of the London Mathematical Society, 75 (2007), 67-82.doi: 10.1112/jlms/jdl020.

    [4]

    A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I, Comm. Math. Phys., 235 (2003), 427-466.doi: 10.1007/s00220-003-0811-y.

    [5]

    A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear singularly perturbed elliptic problems on $\mathbbR^N$, Arch. Ration. Mech. Anal., 159 (2001), 253-271.doi: 10.1007/s002050100152.

    [6]

    S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u+u=a(x)u^p+f(x)$ in $\mathbbR^N$, Calc. Var. Partial Diff. Eqns., 11 (2000), 63-95.doi: 10.1007/s005260050003.

    [7]

    T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Mathematische Annalen, 388 (2007), 147-185.doi: 10.1007/s00208-006-0071-1.

    [8]

    T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.doi: 10.1016/j.anihpc.2004.07.005.

    [9]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [10]

    H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490.doi: 10.2307/2044999.

    [11]

    F. E. Browder, Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc., 71 (1965), 644-648.

    [12]

    J. Byeon and Z. Q.Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.doi: 10.1007/s00205-002-0225-6.

    [13]

    S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138.doi: 10.1006/jdeq.1999.3662.

    [14]

    G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.

    [15]

    D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbbR^N$, Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588.

    [16]

    M. del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149 (1997), 245-265.doi: 10.1006/jfan.1996.3085.

    [17]

    M. del Pino, M. Kowalczyk and J. Wei, Concentrations on curve for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.doi: 10.1002/cpa.20135.

    [18]

    I. Ekeland, On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.

    [19]

    D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. Poincaré-AN, 25 (2008), 149-161.doi: 10.1016/j.anihpc.2006.11.006.

    [20]

    A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.doi: 10.1016/0022-1236(86)90096-0.

    [21]

    M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincare Anal. NonLineaire, 19 (2002), 261-280.doi: 10.1016/S0294-1449(01)00089-0.

    [22]

    Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980.

    [23]

    N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555-567.doi: 10.1007/s00030-009-0017-x.

    [24]

    S. Inouye, M. R. Andrews, J. Stenger, H. J. Miesner, D. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature, 392 (1998), 151-154.

    [25]

    D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett., 81 (1998), 3108-3111.

    [26]

    L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin and C. Salomon, Formation of a matter-wave bright soliton, Science, 296 (2002), 1290-1293.

    [27]

    M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^p=0$ in $\mathbbR^N$, Arch. Rat. Math. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502.

    [28]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case I, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 109-145.

    [29]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case II, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223-283.

    [30]

    T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. I. H. Poincaré-AN, 22 (2005), 403-439.doi: 10.1016/j.anihpc.2004.03.004.

    [31]

    T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^N,$ $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.doi: 10.1007/s00220-005-1313-x.

    [32]

    T. C. Lin and J. Wei, Erratum: Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^N,$ $n\leq 3$ [Comm. Math. Phys. 255 (2005) 629-653; MR2135447], Comm. Math. Phys., 277 (2008), 573-576.

    [33]

    T. C. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations, 229 (2006), 538-569.doi: 10.1016/j.jde.2005.12.011.

    [34]

    C. H. Liu, H. Y. Wang and T. F. Wu, Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbbR^N$, J. Math. Anal. Appl., 348 (2008), 169-179.doi: 10.1016/j.jmaa.2008.06.042.

    [35]

    L.A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767.doi: 10.1016/j.jde.2006.07.002.

    [36]

    L. Pitaevskii and S. Stringari, "Bose-Einstein Condensation," Oxford, 2003.

    [37]

    P. H. Rabinowitz, On a class of nonlinear Schrödinger equation, Z. Angew. Math. Phys., 43 (1992), 270-291.doi: 10.1007/BF00946631.

    [38]

    B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equation in $\mathbbR^N$, Ann. Mat. Pura Appl., 4 (2002), 73-83.doi: 10.1007/s102310200029.

    [39]

    B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^N$, Comm. Math. Phys., 271 (2007), 199-221.doi: 10.1007/s00220-006-0179-x.

    [40]

    X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., (1993), 229-244.

    [41]

    X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equation with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.doi: 10.1137/S0036141095290240.

    [42]

    M. Willem, "Minimax Theorems," Birkhäuser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return