July  2013, 33(7): 2991-3009. doi: 10.3934/dcds.2013.33.2991

Regular maps with the specification property

1. 

Department of Mathematics, Tokushima University, Tokushima 770-8502

2. 

Department of Mathematics, Utsunomiya University, Utsunomiya 321-8505

3. 

School of Information Environment, Tokyo Denki University, 2-1200 Buseigakuendai, Inzai-shi, Chiba 270-1382, Japan

Received  March 2012 Revised  August 2012 Published  January 2013

Let $f$ be a $C^1$-regular map of a closed $C^{\infty}$ manifold $M$ and $\Lambda$ be a locally maximal closed invariant set of $f$. We show that $f|_{\Lambda}$ satisfies the $C^1$-stable specification property if and only if $\Lambda$ is a hyperbolic elementary set. We also prove that there exists a residual subset $\mathcal{R}$ in the space of $C^1$-regular maps endowed with the $C^1$-topology such that for $f \in \mathcal{R}$, $f|_{\Lambda}$ satisfies the specification property if and only if $\Lambda$ is a hyperbolic elementary set.
Citation: Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991
References:
[1]

N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specification,, Monatsh. Math., 93 (1982), 79.  doi: 10.1007/BF01301397.  Google Scholar

[2]

N. Aoki, K. Moriyasu and N. Sumi, $C^1$-maps having hyperbolic periodic points,, Fund. Math., 169 (2001), 1.  doi: 10.4064/fm169-1-1.  Google Scholar

[3]

P. Berger and A. Rovella, On the inverse limit stability of endomorphisms,, preprint, ().   Google Scholar

[4]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Math., 527 (1976).   Google Scholar

[6]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1.  doi: 10.1007/BF02392945.  Google Scholar

[7]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $\mathbbZ^d$-actions,, Comm. Math. Phys., 164 (1994), 433.   Google Scholar

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.   Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Math., 583 (1977).   Google Scholar

[10]

K. Lee, K. Moriyasu and K. Sakai, $C^1$-stable shadowing diffeomorphisms,, Discrete and Continuous Dynam. Sys., 22 (2008), 683.  doi: 10.3934/dcds.2008.22.683.  Google Scholar

[11]

K. Lee and X. Wen, Shadowable chain transitive sets of $C^1$-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263.  doi: 10.4134/BKMS.2012.49.2.263.  Google Scholar

[12]

D. A. Lind, Ergodic group automorphisms and specification,, Ergodic Theory (Proc. Conf., 729 (1979), 93.   Google Scholar

[13]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[14]

R. Mañé, A proof of the $C^1$ stability conjecture,, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 161.   Google Scholar

[15]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171.  doi: 10.3836/tjm/1270130259.  Google Scholar

[16]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.   Google Scholar

[17]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (2-nd Ed.),", Studies in Advanced Mathematics, (1999).   Google Scholar

[18]

A. Rovella and M. Sambarino, The $C^1$ closing lemma for generic $C^1$ endomorphisms,, Ann. I. H. Poincaré AN, 27 (2010), 1461.  doi: 10.1016/j.anihpc.2010.09.003.  Google Scholar

[19]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315.  doi: 10.1090/S0002-9939-09-10085-0.  Google Scholar

[20]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.   Google Scholar

[21]

L. Wen, The $C^1$ closing lemma for non-singular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393.  doi: 10.1017/S0143385700006210.  Google Scholar

[22]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 419.  doi: 10.1007/s00574-004-0023-x.  Google Scholar

show all references

References:
[1]

N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specification,, Monatsh. Math., 93 (1982), 79.  doi: 10.1007/BF01301397.  Google Scholar

[2]

N. Aoki, K. Moriyasu and N. Sumi, $C^1$-maps having hyperbolic periodic points,, Fund. Math., 169 (2001), 1.  doi: 10.4064/fm169-1-1.  Google Scholar

[3]

P. Berger and A. Rovella, On the inverse limit stability of endomorphisms,, preprint, ().   Google Scholar

[4]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Math., 527 (1976).   Google Scholar

[6]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1.  doi: 10.1007/BF02392945.  Google Scholar

[7]

A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $\mathbbZ^d$-actions,, Comm. Math. Phys., 164 (1994), 433.   Google Scholar

[8]

J. Franks, Necessary conditions for stability of diffeomorphisms,, Trans. Amer. Math. Soc., 158 (1971), 301.   Google Scholar

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Math., 583 (1977).   Google Scholar

[10]

K. Lee, K. Moriyasu and K. Sakai, $C^1$-stable shadowing diffeomorphisms,, Discrete and Continuous Dynam. Sys., 22 (2008), 683.  doi: 10.3934/dcds.2008.22.683.  Google Scholar

[11]

K. Lee and X. Wen, Shadowable chain transitive sets of $C^1$-generic diffeomorphisms,, Bull. Korean Math. Soc., 49 (2012), 263.  doi: 10.4134/BKMS.2012.49.2.263.  Google Scholar

[12]

D. A. Lind, Ergodic group automorphisms and specification,, Ergodic Theory (Proc. Conf., 729 (1979), 93.   Google Scholar

[13]

R. Mañé, An ergodic closing lemma,, Annals of Math., 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[14]

R. Mañé, A proof of the $C^1$ stability conjecture,, Inst. Hautes Etudes Sci. Publ. Math., 66 (1988), 161.   Google Scholar

[15]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171.  doi: 10.3836/tjm/1270130259.  Google Scholar

[16]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.   Google Scholar

[17]

C. Robinson, "Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (2-nd Ed.),", Studies in Advanced Mathematics, (1999).   Google Scholar

[18]

A. Rovella and M. Sambarino, The $C^1$ closing lemma for generic $C^1$ endomorphisms,, Ann. I. H. Poincaré AN, 27 (2010), 1461.  doi: 10.1016/j.anihpc.2010.09.003.  Google Scholar

[19]

K. Sakai, N. Sumi and K. Yamamoto, Diffeomorphisms satisfying the specification property,, Proc. Amer. Math. Soc., 138 (2010), 315.  doi: 10.1090/S0002-9939-09-10085-0.  Google Scholar

[20]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.   Google Scholar

[21]

L. Wen, The $C^1$ closing lemma for non-singular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393.  doi: 10.1017/S0143385700006210.  Google Scholar

[22]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 419.  doi: 10.1007/s00574-004-0023-x.  Google Scholar

[1]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[2]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[3]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[4]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[5]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[6]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[7]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[8]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[9]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[10]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[11]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[12]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[13]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[16]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (5)

[Back to Top]