\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improved geodesics for the reduced curvature-dimension condition in branching metric spaces

Abstract Related Papers Cited by
  • In this note we show that in metric measure spaces satisfying the reduced curvature-dimension condition $CD^*(K,N)$ we always have geodesics in the Wasserstein space of probability measures that satisfy the critical convexity inequality of $CD^*(K,N)$ also for intermediate times and in addition the measures along these geodesics have an upper-bound on their densities. This upper-bound depends on the bounds for the densities of the end-point measures, the lower-bound $K$ for the Ricci-curvature, the upper-bound $N$ for the dimension, and on the diameter of the union of the supports of the end-point measures.
    Mathematics Subject Classification: Primary: 53C23; Secondary: 28A33, 49Q20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, Journal Funct. Anal., 259 (2010), 28-56.doi: 10.1016/j.jfa.2010.03.024.

    [2]

    F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, Journal Funct. Anal., 262 (2012), 5110-5127.doi: 10.1016/j.jfa.2012.02.015.

    [3]

    Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces II, Journal Funct. Anal., 260 (2011), 3718-3725.doi: 10.1016/j.jfa.2011.02.026.

    [4]

    J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903.

    [5]

    T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, Journal Funct. Anal., 263 (2012), 896-924.doi: 10.1016/j.jfa.2012.05.006.

    [6]

    T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), 477-494.doi: 10.1007/s00526-011-0442-7.

    [7]

    K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8.

    [8]

    K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177.doi: 10.1007/s11511-006-0003-7.

    [9]

    C. Villani, "Optimal Transport. Old and New," 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return