Citation: |
[1] |
K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, Journal Funct. Anal., 259 (2010), 28-56.doi: 10.1016/j.jfa.2010.03.024. |
[2] |
F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, Journal Funct. Anal., 262 (2012), 5110-5127.doi: 10.1016/j.jfa.2012.02.015. |
[3] |
Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces II, Journal Funct. Anal., 260 (2011), 3718-3725.doi: 10.1016/j.jfa.2011.02.026. |
[4] |
J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903. |
[5] |
T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, Journal Funct. Anal., 263 (2012), 896-924.doi: 10.1016/j.jfa.2012.05.006. |
[6] |
T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), 477-494.doi: 10.1007/s00526-011-0442-7. |
[7] |
K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8. |
[8] |
K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177.doi: 10.1007/s11511-006-0003-7. |
[9] |
C. Villani, "Optimal Transport. Old and New," 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |