-
Previous Article
Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems
- DCDS Home
- This Issue
-
Next Article
Improved geodesics for the reduced curvature-dimension condition in branching metric spaces
On the dichotomic behavior of discrete dynamical systems on the half-line
1. | Faculty of Mathematics and Computer Science, West University of Timişoara, V. Pârvan Blvd. No. 4, 300223 Timişoara, Romania |
References:
[1] |
N. Apreutesei and V. Volpert, Solvability conditions for infinite systems of difference equations,, J. Difference Equ. Appl., 15 (2009), 659.
doi: 10.1080/10236190802259824. |
[2] |
B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.
doi: 10.1080/10236199608808060. |
[3] |
L. Barreira and C. Valls, Stability of dichotomies in difference equations with infinite delay,, Nonlinear Analysis, 72 (2010), 881.
doi: 10.1016/j.na.2009.07.028. |
[4] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and admissibility,, Discrete Contin. Dyn. Syst., 30 (2011), 39.
doi: 10.3934/dcds.2011.30.39. |
[5] |
L. Barreira and C. Valls, Stable manifolds with optimal regularity for difference equations,, Discrete Contin. Dyn. Syst., 32 (2012), 1537.
doi: 10.3934/dcds.2012.32.1537. |
[6] |
L. Barreira and C. Valls, Nonautonomous difference equations and a Perron-type theorem,, Bull. Sci. Math., 136 (2012), 277.
doi: 10.1016/j.bulsci.2011.12.003. |
[7] |
C. Bennett and R. Sharpley, "Interpolation of Operators,", Pure Appl. Math., 129 (1988).
|
[8] |
L. Berezansky and E. Braverman, On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations,, J. Math. Anal. Appl., 304 (2005), 511.
doi: 10.1016/j.jmaa.2004.09.042. |
[9] |
L. Berezansky and E. Braverman, New stability conditions for linear difference equations using Bohl-Perron type theorems,, J. Difference Equ. Appl., 17 (2011), 657.
doi: 10.1080/10236190903146938. |
[10] |
E. Braverman and I. M. Karabash, Bohl-Perron-type stability theorems for linear difference equations with infinite delay,, J. Difference Equ. Appl., 18 (2012), 909.
doi: 10.1080/10236198.2010.531276. |
[11] |
S. N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces,, J. Differential Equations, 120 (1995), 429.
doi: 10.1006/jdeq.1995.1117. |
[12] |
S. N. Chow and H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces,, Proc. Amer. Math. Soc., 124 (1996), 1071.
doi: 10.1090/S0002-9939-96-03433-8. |
[13] |
C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations,, Math. Ann., 172 (1967), 139.
|
[14] |
W. A. Coppel, "Dichotomies in Stability Theory,", Springer Verlag, (1978).
|
[15] |
S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417.
doi: 10.1080/10236199708808113. |
[16] |
S. Elaydi, Is the world evolving discretely?,, Adv. Appl. Math., 31 (2003), 1.
doi: 10.1016/S0196-8858(03)00072-1. |
[17] |
N. T. Huy and N. Van Minh, Exponential dichotomy of difference equations and applications to evolution equations on the half-line,, Comput. Math. Appl., 42 (2001), 301.
doi: 10.1016/S0898-1221(01)00155-9. |
[18] |
J. L. Massera and J. J. Schäffer, "Linear Differential Equations and Function Spaces,", Academic Press, (1966).
|
[19] |
M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families,, Discrete Contin. Dyn. Syst., 9 (2003), 383.
|
[20] |
N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line,, Integral Equations Operator Theory, 32 (1998), 332.
doi: 10.1007/BF01203774. |
[21] |
N. Van Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28.
doi: 10.1006/jmaa.2001.7450. |
[22] |
N. Van Minh, Asymptotic behavior of individual orbits of discrete systems,, Proc. Amer. Math. Soc., 137 (2009), 3025.
doi: 10.1090/S0002-9939-09-09871-2. |
[23] |
O. Perron, Die Stabilitätsfrage bei Differentialgleischungen,, Math. Z., 32 (1930), 703.
doi: 10.1007/BF01194662. |
[24] |
M. Pituk, A criterion for the exponential stability of linear difference equations,, Appl. Math. Lett., 17 (2004), 779.
doi: 10.1016/j.aml.2004.06.005. |
[25] |
C. Pötzsche, "Geometric Theory of Discrete Nonautonomous Dynamical Systems,", Lecture Notes in Mathematics, 2002 (2010).
doi: 10.1007/978-3-642-14258-1. |
[26] |
B. Sasu and A. L. Sasu, Stability and stabilizability for linear systems of difference equations,, J. Difference Equ. Appl., 10 (2004), 1085.
doi: 10.1080/10236190412331314178. |
[27] |
A. L. Sasu and B. Sasu, Exponential dichotomy and admissibility for evolution families on the real line,, Dynam. Contin. Discrete Impuls. Systems, 13 (2006), 1.
|
[28] |
B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p, l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397.
doi: 10.1016/j.jmaa.2005.04.047. |
[29] |
B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line,, J. Math. Anal. Appl., 323 (2006), 1465.
doi: 10.1016/j.jmaa.2005.12.002. |
[30] |
A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, J. Math. Anal. Appl., 344 (2008), 906.
doi: 10.1016/j.jmaa.2008.03.019. |
[31] |
B. Sasu, Stability of difference equations and applications to robustness problems,, Adv. Difference Equ., (2010).
|
[32] |
A. L. Sasu and B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications,, Integral Equations Operator Theory, 66 (2010), 113.
doi: 10.1007/s00020-009-1735-5. |
[33] |
A. L. Sasu and B. Sasu, Input-output admissibility and exponential trichotomy of difference equations,, J. Math. Anal. Appl., 380 (2011), 17.
doi: 10.1016/j.jmaa.2011.02.045. |
show all references
References:
[1] |
N. Apreutesei and V. Volpert, Solvability conditions for infinite systems of difference equations,, J. Difference Equ. Appl., 15 (2009), 659.
doi: 10.1080/10236190802259824. |
[2] |
B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.
doi: 10.1080/10236199608808060. |
[3] |
L. Barreira and C. Valls, Stability of dichotomies in difference equations with infinite delay,, Nonlinear Analysis, 72 (2010), 881.
doi: 10.1016/j.na.2009.07.028. |
[4] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and admissibility,, Discrete Contin. Dyn. Syst., 30 (2011), 39.
doi: 10.3934/dcds.2011.30.39. |
[5] |
L. Barreira and C. Valls, Stable manifolds with optimal regularity for difference equations,, Discrete Contin. Dyn. Syst., 32 (2012), 1537.
doi: 10.3934/dcds.2012.32.1537. |
[6] |
L. Barreira and C. Valls, Nonautonomous difference equations and a Perron-type theorem,, Bull. Sci. Math., 136 (2012), 277.
doi: 10.1016/j.bulsci.2011.12.003. |
[7] |
C. Bennett and R. Sharpley, "Interpolation of Operators,", Pure Appl. Math., 129 (1988).
|
[8] |
L. Berezansky and E. Braverman, On exponential dichotomy, Bohl-Perron type theorems and stability of difference equations,, J. Math. Anal. Appl., 304 (2005), 511.
doi: 10.1016/j.jmaa.2004.09.042. |
[9] |
L. Berezansky and E. Braverman, New stability conditions for linear difference equations using Bohl-Perron type theorems,, J. Difference Equ. Appl., 17 (2011), 657.
doi: 10.1080/10236190903146938. |
[10] |
E. Braverman and I. M. Karabash, Bohl-Perron-type stability theorems for linear difference equations with infinite delay,, J. Difference Equ. Appl., 18 (2012), 909.
doi: 10.1080/10236198.2010.531276. |
[11] |
S. N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces,, J. Differential Equations, 120 (1995), 429.
doi: 10.1006/jdeq.1995.1117. |
[12] |
S. N. Chow and H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in Banach spaces,, Proc. Amer. Math. Soc., 124 (1996), 1071.
doi: 10.1090/S0002-9939-96-03433-8. |
[13] |
C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations,, Math. Ann., 172 (1967), 139.
|
[14] |
W. A. Coppel, "Dichotomies in Stability Theory,", Springer Verlag, (1978).
|
[15] |
S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417.
doi: 10.1080/10236199708808113. |
[16] |
S. Elaydi, Is the world evolving discretely?,, Adv. Appl. Math., 31 (2003), 1.
doi: 10.1016/S0196-8858(03)00072-1. |
[17] |
N. T. Huy and N. Van Minh, Exponential dichotomy of difference equations and applications to evolution equations on the half-line,, Comput. Math. Appl., 42 (2001), 301.
doi: 10.1016/S0898-1221(01)00155-9. |
[18] |
J. L. Massera and J. J. Schäffer, "Linear Differential Equations and Function Spaces,", Academic Press, (1966).
|
[19] |
M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families,, Discrete Contin. Dyn. Syst., 9 (2003), 383.
|
[20] |
N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line,, Integral Equations Operator Theory, 32 (1998), 332.
doi: 10.1007/BF01203774. |
[21] |
N. Van Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the half-line,, J. Math. Anal. Appl., 261 (2001), 28.
doi: 10.1006/jmaa.2001.7450. |
[22] |
N. Van Minh, Asymptotic behavior of individual orbits of discrete systems,, Proc. Amer. Math. Soc., 137 (2009), 3025.
doi: 10.1090/S0002-9939-09-09871-2. |
[23] |
O. Perron, Die Stabilitätsfrage bei Differentialgleischungen,, Math. Z., 32 (1930), 703.
doi: 10.1007/BF01194662. |
[24] |
M. Pituk, A criterion for the exponential stability of linear difference equations,, Appl. Math. Lett., 17 (2004), 779.
doi: 10.1016/j.aml.2004.06.005. |
[25] |
C. Pötzsche, "Geometric Theory of Discrete Nonautonomous Dynamical Systems,", Lecture Notes in Mathematics, 2002 (2010).
doi: 10.1007/978-3-642-14258-1. |
[26] |
B. Sasu and A. L. Sasu, Stability and stabilizability for linear systems of difference equations,, J. Difference Equ. Appl., 10 (2004), 1085.
doi: 10.1080/10236190412331314178. |
[27] |
A. L. Sasu and B. Sasu, Exponential dichotomy and admissibility for evolution families on the real line,, Dynam. Contin. Discrete Impuls. Systems, 13 (2006), 1.
|
[28] |
B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p, l^q)$-admissibility on the half-line,, J. Math. Anal. Appl., 316 (2006), 397.
doi: 10.1016/j.jmaa.2005.04.047. |
[29] |
B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line,, J. Math. Anal. Appl., 323 (2006), 1465.
doi: 10.1016/j.jmaa.2005.12.002. |
[30] |
A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, J. Math. Anal. Appl., 344 (2008), 906.
doi: 10.1016/j.jmaa.2008.03.019. |
[31] |
B. Sasu, Stability of difference equations and applications to robustness problems,, Adv. Difference Equ., (2010).
|
[32] |
A. L. Sasu and B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications,, Integral Equations Operator Theory, 66 (2010), 113.
doi: 10.1007/s00020-009-1735-5. |
[33] |
A. L. Sasu and B. Sasu, Input-output admissibility and exponential trichotomy of difference equations,, J. Math. Anal. Appl., 380 (2011), 17.
doi: 10.1016/j.jmaa.2011.02.045. |
[1] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[2] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[3] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[4] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[5] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[6] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[7] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[8] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[9] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[10] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[11] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[12] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[13] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[14] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[15] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[16] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[17] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[18] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[19] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[20] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]