July  2013, 33(7): 3085-3108. doi: 10.3934/dcds.2013.33.3085

Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems

1. 

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007

2. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

Received  January 2012 Revised  November 2012 Published  January 2013

This paper is concerned with bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. By analyzing the multiplicities of the zeroes of the slow divergence integrals and their complete unfolding, the upper bounds of canard limit cycles bifurcating from the suitable limit periodic sets through respectively the generic Hopf breaking mechanism, the generic jump breaking mechanism and a succession of the Hopf and jump mechanisms in these polynomial Liénard systems are obtained.
Citation: Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085
References:
[1]

P. De, Maesschalck and F. Dumortier, Classical Liénard equations of degess $n\geq6$ can have $[\frac{n-1}{2}]+2$ limit cycles,, J. Differential Equations, 250 (2011), 2162.  doi: 10.1016/j.jde.2010.12.003.  Google Scholar

[2]

P. De, Maesschalck and F. Dumortier, Bifurcations of multiple relaxation oscillations in polynomial Liénard equations,, Proc. Amer. Math. Soc., 139 (2011), 2073.  doi: 10.1090/S0002-9939-2010-10610-X.  Google Scholar

[3]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qual. Theory Dyn. Syst., 10 (2011), 65.  doi: 10.1007/s12346-011-0038-9.  Google Scholar

[4]

F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations,, Proc. Amer. Math. Soc., 135 (2007), 1895.  doi: 10.1090/S0002-9939-07-08688-1.  Google Scholar

[5]

F. Dumortier and R. Roussarie, Multiple canard cycles in generalized Liénard equations,, J. Differential Equations, 174 (2001), 1.  doi: 10.1006/jdeq.2000.3947.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Bifurcation of relaxation oscillations in dimension two,, Discrete Contin. Dyn. Syst., 19 (2007), 631.  doi: 10.3934/dcds.2007.19.631.  Google Scholar

[7]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters,, Discrete Contin. Dyn. Syst., 17 (2007), 787.  doi: 10.3934/dcds.2007.17.787.  Google Scholar

[8]

F. Dumortier and R. Roussarie, Multi-layer canard cycles and translated power functions,, J. Differential Equations, 244 (2008), 1329.  doi: 10.1016/j.jde.2007.08.013.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", in: Graduate Texts in Math., (1973).   Google Scholar

[10]

M. Han, P. Bi and D. Xiao, Bifurcation of limit cycles and separatrix loops in singular Liénard systems,, Chaos Solitons Fractals, 20 (2004), 529.  doi: 10.1016/S0960-0779(03)00412-0.  Google Scholar

[11]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard equations of degree four,, J. Differential Equations, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[12]

A. Lins, W. de Melo and C.C. Pugh, On Liénard's equations,, in, (1977), 335.   Google Scholar

[13]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, in, (2008), 224.   Google Scholar

[14]

L. Mamouhdi and R. Roussarie, Canard cycles of finite codimension with two breaking parameters,, Qual. Theory Dyn. Syst., 11 (2012), 167.  doi: 10.1007/s12346-011-0061-x.  Google Scholar

[15]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[16]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems,, J. Differential Equations, 251 (2011), 834.  doi: 10.1016/j.jde.2011.05.029.  Google Scholar

[17]

J. Wang and D. Xiao, On the number of the limit cycles in small perturbation of a class of hyper-ellipic Hamiltonian systems with one nilponent saddle,, J. Differential Equations, 250 (2011), 2227.  doi: 10.1016/j.jde.2010.11.004.  Google Scholar

[18]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations,", Science Publisher, (1985).   Google Scholar

show all references

References:
[1]

P. De, Maesschalck and F. Dumortier, Classical Liénard equations of degess $n\geq6$ can have $[\frac{n-1}{2}]+2$ limit cycles,, J. Differential Equations, 250 (2011), 2162.  doi: 10.1016/j.jde.2010.12.003.  Google Scholar

[2]

P. De, Maesschalck and F. Dumortier, Bifurcations of multiple relaxation oscillations in polynomial Liénard equations,, Proc. Amer. Math. Soc., 139 (2011), 2073.  doi: 10.1090/S0002-9939-2010-10610-X.  Google Scholar

[3]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qual. Theory Dyn. Syst., 10 (2011), 65.  doi: 10.1007/s12346-011-0038-9.  Google Scholar

[4]

F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations,, Proc. Amer. Math. Soc., 135 (2007), 1895.  doi: 10.1090/S0002-9939-07-08688-1.  Google Scholar

[5]

F. Dumortier and R. Roussarie, Multiple canard cycles in generalized Liénard equations,, J. Differential Equations, 174 (2001), 1.  doi: 10.1006/jdeq.2000.3947.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Bifurcation of relaxation oscillations in dimension two,, Discrete Contin. Dyn. Syst., 19 (2007), 631.  doi: 10.3934/dcds.2007.19.631.  Google Scholar

[7]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters,, Discrete Contin. Dyn. Syst., 17 (2007), 787.  doi: 10.3934/dcds.2007.17.787.  Google Scholar

[8]

F. Dumortier and R. Roussarie, Multi-layer canard cycles and translated power functions,, J. Differential Equations, 244 (2008), 1329.  doi: 10.1016/j.jde.2007.08.013.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", in: Graduate Texts in Math., (1973).   Google Scholar

[10]

M. Han, P. Bi and D. Xiao, Bifurcation of limit cycles and separatrix loops in singular Liénard systems,, Chaos Solitons Fractals, 20 (2004), 529.  doi: 10.1016/S0960-0779(03)00412-0.  Google Scholar

[11]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard equations of degree four,, J. Differential Equations, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[12]

A. Lins, W. de Melo and C.C. Pugh, On Liénard's equations,, in, (1977), 335.   Google Scholar

[13]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, in, (2008), 224.   Google Scholar

[14]

L. Mamouhdi and R. Roussarie, Canard cycles of finite codimension with two breaking parameters,, Qual. Theory Dyn. Syst., 11 (2012), 167.  doi: 10.1007/s12346-011-0061-x.  Google Scholar

[15]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[16]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems,, J. Differential Equations, 251 (2011), 834.  doi: 10.1016/j.jde.2011.05.029.  Google Scholar

[17]

J. Wang and D. Xiao, On the number of the limit cycles in small perturbation of a class of hyper-ellipic Hamiltonian systems with one nilponent saddle,, J. Differential Equations, 250 (2011), 2227.  doi: 10.1016/j.jde.2010.11.004.  Google Scholar

[18]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations,", Science Publisher, (1985).   Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[3]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[4]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[5]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[6]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[7]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[11]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[12]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[13]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[14]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[15]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[18]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[19]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[20]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]