July  2013, 33(7): 3135-3152. doi: 10.3934/dcds.2013.33.3135

Entropy and exact Devaney chaos on totally regular continua

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica

Received  March 2012 Revised  May 2012 Published  January 2013

We study topological entropy of exactly Devaney chaotic maps on totally regular continua, i.e. on (topologically) rectifiable curves. After introducing the so-called $P$-Lipschitz maps (where $P$ is a finite invariant set) we give an upper bound for their topological entropy. We prove that if a non-degenerate totally regular continuum $X$ contains a free arc which does not disconnect $X$ or if $X$ contains arbitrarily large generalized stars then $X$ admits an exactly Devaney chaotic map with arbitrarily small entropy. A possible application for further study of the best lower bounds of topological entropies of transitive/Devaney chaotic maps is indicated.
Citation: Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135
References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.  doi: 10.1016/0040-9383(95)00070-4.  Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000).   Google Scholar

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359.  doi: 10.1006/jmaa.1999.6277.  Google Scholar

[5]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.  doi: 10.1016/S0040-9383(99)00074-9.  Google Scholar

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[7]

R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101.   Google Scholar

[8]

A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203.   Google Scholar

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3.   Google Scholar

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165.   Google Scholar

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.   Google Scholar

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319.   Google Scholar

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324.   Google Scholar

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().  doi: 10.1017/S0143385712000442.  Google Scholar

[15]

K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986).   Google Scholar

[16]

H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969).   Google Scholar

[17]

D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449.  doi: 10.1112/plms/s3-64.3.449.  Google Scholar

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, ().   Google Scholar

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).   Google Scholar

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.  doi: 10.3934/dcds.2011.30.767.  Google Scholar

[21]

K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968).   Google Scholar

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.  doi: 10.1007/BF02972670.  Google Scholar

[23]

S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005).  doi: 10.1201/9781420026535.  Google Scholar

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995).   Google Scholar

[25]

S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992).   Google Scholar

[26]

J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125.   Google Scholar

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, ().   Google Scholar

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, ().   Google Scholar

[29]

G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942).   Google Scholar

[30]

X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289.  doi: 10.1017/S0143385700000134.  Google Scholar

show all references

References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.  doi: 10.1016/0040-9383(95)00070-4.  Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000).   Google Scholar

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359.  doi: 10.1006/jmaa.1999.6277.  Google Scholar

[5]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.  doi: 10.1016/S0040-9383(99)00074-9.  Google Scholar

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[7]

R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101.   Google Scholar

[8]

A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203.   Google Scholar

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3.   Google Scholar

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165.   Google Scholar

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.   Google Scholar

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319.   Google Scholar

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324.   Google Scholar

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().  doi: 10.1017/S0143385712000442.  Google Scholar

[15]

K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986).   Google Scholar

[16]

H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969).   Google Scholar

[17]

D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449.  doi: 10.1112/plms/s3-64.3.449.  Google Scholar

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, ().   Google Scholar

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).   Google Scholar

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.  doi: 10.3934/dcds.2011.30.767.  Google Scholar

[21]

K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968).   Google Scholar

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.  doi: 10.1007/BF02972670.  Google Scholar

[23]

S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005).  doi: 10.1201/9781420026535.  Google Scholar

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995).   Google Scholar

[25]

S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992).   Google Scholar

[26]

J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125.   Google Scholar

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, ().   Google Scholar

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, ().   Google Scholar

[29]

G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942).   Google Scholar

[30]

X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289.  doi: 10.1017/S0143385700000134.  Google Scholar

[1]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[4]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[5]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[6]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[7]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[8]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[9]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[10]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[11]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[12]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[13]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[14]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[15]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[16]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[19]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[20]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]