July  2013, 33(7): 3135-3152. doi: 10.3934/dcds.2013.33.3135

Entropy and exact Devaney chaos on totally regular continua

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica

Received  March 2012 Revised  May 2012 Published  January 2013

We study topological entropy of exactly Devaney chaotic maps on totally regular continua, i.e. on (topologically) rectifiable curves. After introducing the so-called $P$-Lipschitz maps (where $P$ is a finite invariant set) we give an upper bound for their topological entropy. We prove that if a non-degenerate totally regular continuum $X$ contains a free arc which does not disconnect $X$ or if $X$ contains arbitrarily large generalized stars then $X$ admits an exactly Devaney chaotic map with arbitrarily small entropy. A possible application for further study of the best lower bounds of topological entropies of transitive/Devaney chaotic maps is indicated.
Citation: Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135
References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps, Topology, 36 (1997), 519-532. doi: 10.1016/0040-9383(95)00070-4.

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., 351 (1999), 1551-1573. doi: 10.1090/S0002-9947-99-02077-2.

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One," $2^{nd}$ edition, Advanced Series in Nonlinear Dynamics 5, World Scientific, Singapore, 2000.

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps, J. Math. Anal. Appl., 232 (1999), 359-375. doi: 10.1006/jmaa.1999.6277.

[5]

S. Baldwin, Entropy estimates for transitive maps on trees, Topology, 40 (2001), 551-569. doi: 10.1016/S0040-9383(99)00074-9.

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps, Topology Appl., 133 (2003), 225-239. doi: 10.1016/S0166-8641(03)00090-7.

[7]

R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc., 55 (1949), 1101-1110.

[8]

A. Blokh, On sensitive mappings of the interval, Russian Math. Surveys, 37 (1982), 203-204.

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds, (Russian), Differential-Difference Equations and Problems of Mathematical Physics, 3-9, 131, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, (1984).

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings, Russ. Math. Surv., 42 (1987), 165-166.

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414; Erratum: Trans. Amer. Math. Soc. 181 (1973), 509-510.

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits, Houston J. Math., 18 (1992), 319-327.

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 324-366.

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().  doi: 10.1017/S0143385712000442.

[15]

K. J. Falconer, "The Geometry of Fractal Sets," Cambridge University Press, Cambridge, 1986.

[16]

H. Federer, "Geometric Measure Theory," Springer-Verlag New York Inc., New York, 1969.

[17]

D. H. Fremlin, Spaces of finite length, Proc. London Math. Soc., 64 (1992), 449-486. doi: 10.1112/plms/s3-64.3.449.

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). 

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, Cambridge, 1995.

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps, Discrete Contin. Dyn. Syst., 30 (2011), 767-777. doi: 10.3934/dcds.2011.30.767.

[21]

K. Kuratowski, "Topology, vol. 2," Academic Press and PWN, Warszawa, 1968.

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst., 6 (2005), 169-179. doi: 10.1007/BF02972670.

[23]

S. Macías, "Topics on Continua," Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420026535.

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge University Press, Cambridge, 1995.

[25]

S. B. Nadler, "Continuum Theory. An Introduction," Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.

[26]

J. Nikiel, Locally connected curves viewed as inverse limits, Fund. Math., 133 (1989), 125-134.

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). 

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). 

[29]

G. T. Whyburn, "Analytic Topology," American Mathematical Society, New York, 1942.

[30]

X. Ye, Topological entropy of transitive maps of a tree, Ergodic Theory Dynam. Systems, 20 (2000), 289-314. doi: 10.1017/S0143385700000134.

show all references

References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps, Topology, 36 (1997), 519-532. doi: 10.1016/0040-9383(95)00070-4.

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., 351 (1999), 1551-1573. doi: 10.1090/S0002-9947-99-02077-2.

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One," $2^{nd}$ edition, Advanced Series in Nonlinear Dynamics 5, World Scientific, Singapore, 2000.

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps, J. Math. Anal. Appl., 232 (1999), 359-375. doi: 10.1006/jmaa.1999.6277.

[5]

S. Baldwin, Entropy estimates for transitive maps on trees, Topology, 40 (2001), 551-569. doi: 10.1016/S0040-9383(99)00074-9.

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps, Topology Appl., 133 (2003), 225-239. doi: 10.1016/S0166-8641(03)00090-7.

[7]

R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc., 55 (1949), 1101-1110.

[8]

A. Blokh, On sensitive mappings of the interval, Russian Math. Surveys, 37 (1982), 203-204.

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds, (Russian), Differential-Difference Equations and Problems of Mathematical Physics, 3-9, 131, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, (1984).

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings, Russ. Math. Surv., 42 (1987), 165-166.

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414; Erratum: Trans. Amer. Math. Soc. 181 (1973), 509-510.

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits, Houston J. Math., 18 (1992), 319-327.

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 324-366.

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().  doi: 10.1017/S0143385712000442.

[15]

K. J. Falconer, "The Geometry of Fractal Sets," Cambridge University Press, Cambridge, 1986.

[16]

H. Federer, "Geometric Measure Theory," Springer-Verlag New York Inc., New York, 1969.

[17]

D. H. Fremlin, Spaces of finite length, Proc. London Math. Soc., 64 (1992), 449-486. doi: 10.1112/plms/s3-64.3.449.

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). 

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, Cambridge, 1995.

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps, Discrete Contin. Dyn. Syst., 30 (2011), 767-777. doi: 10.3934/dcds.2011.30.767.

[21]

K. Kuratowski, "Topology, vol. 2," Academic Press and PWN, Warszawa, 1968.

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst., 6 (2005), 169-179. doi: 10.1007/BF02972670.

[23]

S. Macías, "Topics on Continua," Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420026535.

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge University Press, Cambridge, 1995.

[25]

S. B. Nadler, "Continuum Theory. An Introduction," Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.

[26]

J. Nikiel, Locally connected curves viewed as inverse limits, Fund. Math., 133 (1989), 125-134.

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). 

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). 

[29]

G. T. Whyburn, "Analytic Topology," American Mathematical Society, New York, 1942.

[30]

X. Ye, Topological entropy of transitive maps of a tree, Ergodic Theory Dynam. Systems, 20 (2000), 289-314. doi: 10.1017/S0143385700000134.

[1]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks and Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[2]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[3]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[4]

Fernando Lenarduzzi. Recoding the classical Hénon-Devaney map. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4073-4092. doi: 10.3934/dcds.2020172

[5]

Steffen Klassert, Daniel Lenz, Peter Stollmann. Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1553-1571. doi: 10.3934/dcds.2011.29.1553

[6]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[7]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[8]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[9]

Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431

[10]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[11]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[12]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[13]

Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?. Networks and Heterogeneous Media, 2014, 9 (4) : 575-597. doi: 10.3934/nhm.2014.9.575

[14]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[15]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[16]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[17]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial and Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[18]

Phoebus Rosakis. Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9 (3) : 453-476. doi: 10.3934/nhm.2014.9.453

[19]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[20]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]