-
Previous Article
Harnack's inequality for fractional nonlocal equations
- DCDS Home
- This Issue
-
Next Article
On the stability of periodic orbits in delay equations with large delay
Entropy and exact Devaney chaos on totally regular continua
1. | Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica |
References:
[1] |
L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.
doi: 10.1016/0040-9383(95)00070-4. |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000).
|
[4] |
L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359.
doi: 10.1006/jmaa.1999.6277. |
[5] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[6] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[7] |
R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101.
|
[8] |
A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203.
|
[9] |
A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3.
|
[10] |
A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165.
|
[11] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
|
[12] |
R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319.
|
[13] |
E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324.
|
[14] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().
doi: 10.1017/S0143385712000442. |
[15] |
K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986).
|
[16] |
H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969).
|
[17] |
D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449.
doi: 10.1112/plms/s3-64.3.449. |
[18] |
G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). Google Scholar |
[19] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).
|
[20] |
S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.
doi: 10.3934/dcds.2011.30.767. |
[21] |
K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968).
|
[22] |
D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.
doi: 10.1007/BF02972670. |
[23] |
S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005).
doi: 10.1201/9781420026535. |
[24] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995).
|
[25] |
S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992).
|
[26] |
J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125.
|
[27] |
S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). Google Scholar |
[28] |
V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). Google Scholar |
[29] |
G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942).
|
[30] |
X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289.
doi: 10.1017/S0143385700000134. |
show all references
References:
[1] |
L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.
doi: 10.1016/0040-9383(95)00070-4. |
[2] |
L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.
doi: 10.1090/S0002-9947-99-02077-2. |
[3] |
Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000).
|
[4] |
L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359.
doi: 10.1006/jmaa.1999.6277. |
[5] |
S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551.
doi: 10.1016/S0040-9383(99)00074-9. |
[6] |
F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.
doi: 10.1016/S0166-8641(03)00090-7. |
[7] |
R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101.
|
[8] |
A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203.
|
[9] |
A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3.
|
[10] |
A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165.
|
[11] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
|
[12] |
R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319.
|
[13] |
E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324.
|
[14] |
M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, ().
doi: 10.1017/S0143385712000442. |
[15] |
K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986).
|
[16] |
H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969).
|
[17] |
D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449.
doi: 10.1112/plms/s3-64.3.449. |
[18] |
G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). Google Scholar |
[19] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995).
|
[20] |
S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.
doi: 10.3934/dcds.2011.30.767. |
[21] |
K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968).
|
[22] |
D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.
doi: 10.1007/BF02972670. |
[23] |
S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005).
doi: 10.1201/9781420026535. |
[24] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995).
|
[25] |
S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992).
|
[26] |
J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125.
|
[27] |
S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). Google Scholar |
[28] |
V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). Google Scholar |
[29] |
G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942).
|
[30] |
X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289.
doi: 10.1017/S0143385700000134. |
[1] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[2] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[3] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021017 |
[4] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[5] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[6] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[7] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[8] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[9] |
Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021002 |
[10] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[11] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[12] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[13] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[16] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[17] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[18] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[19] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[20] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]